首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We have investigated by electrophoretic mobility shift assay (EMSA) the level of GATA-1 DNA-binding activity in nuclear extracts prepared from the human erythroleukaemic cell line, K562, after erythroid induction by hemin, sodium butyrate (NaB) or Trichostatin A or treatment with N -acetylcysteine (NAC). Relative to extract from untreated cells, GATA-1 binding activity increased markedly in all cases. However, immunoblot analysis revealed unchanged levels of GATA-1 protein after induction. Incubation of induced but not uninduced K562 extracts with phosphatase prior to EMSA weakened the binding activity, suggesting that the increase in GATA-1 binding following induction of K562 cells was a consequence of phosphorylation. When the mouse erythroleukaemic cell line MEL was induced with dimethylsulphoxide (DMSO), NaB or NAC, GATA-1 binding activity fell with DMSO, rose significantly with NaB and remained at about the same level in NAC-induced cells. In this case immunoblotting revealed that GATA-1 protein levels were in accord with the EMSA data. The DNA-binding activities of induced and uninduced MEL cell nuclear extracts were decreased by incubation with phosphatase, showing that phosphoryl-ation and DNA binding of GATA-1 are already optimalin these cells. The DNA-binding activity of affinity-purified GATA-1 from MEL cells was also reduced by phosphatase treatment, showing that phosphorylation/dephosphorylation is directly affecting the factor. Furthermore, when a comparison was made by EMSA of nuclear extracts prepared from K562 and MEL cells untreated or incubated with okadaic acid, a phosphatase inhibitor, GATA-1 binding was seen to increase with K562 cells, whereas with MEL cells there was no change in GATA-1 binding. Overall the results suggest that the level of GATA-1 phosphorylation increases after the induction of K562, but not MEL cells, where GATA-1 is already highly phosphorylated. Furthermore, phosphorylation increases the binding affinity of GATA-1 for a canonical binding site.  相似文献   

8.
9.
10.
The human cruciform binding protein (CBP), a member of the 14-3-3 protein family, has been recently identified as an origin of DNA replication binding protein and involved in DNA replication. Here, pure recombinant 14-3-3zeta tagged with maltose binding protein (r14-3-3zeta-MBP) at its N-terminus was tested for binding to cruciform DNA either in the absence or presence of F(TH), a CBP-enriched fraction, by electromobility shift assay (EMSA), followed by Western blot analysis of the electroeluted CBP-cruciform DNA complex. The r14-3-3zeta-MBP was found to have cruciform binding activity only after preincubation with F(TH). Anti-MBP antibody immunoprecipitation of F(TH) preincubated with r14-3-3zeta-MBP, followed by Western blot analysis with antibodies specific to the beta, gamma, epsilon, zeta, and sigma 14-3-3 isoforms showed that r14-3-3zeta-MBP heterodimerized with the endogenous beta, epsilon, and zeta isoforms present in the F(TH) but not with the gamma or sigma isoforms. Immunoprecipitation of endogenous 14-3-3zeta from nuclear extracts (NE) of HeLa cells that were either serum-starved (s-s) or blocked at the G(1)/S or G(2)/M phases of the cell cycle revealed that at G(1)/S and G(2)/M, the zeta isoform heterodimerized only with the beta and epsilon isoforms, while in s-s extracts, the 14-3-3zeta/epsilon heterodimer was never detected, and the 14-3-3zeta/beta heterodimer was seldom detected. Furthermore, addition of r14-3-3zeta-MBP to HeLa cell extracts used in a mammalian in vitro replication system increased the replication level of p186, a plasmid bearing the minimal 186-bp origin of the monkey origin of DNA replication ors8, by approximately 3.5-fold. The data suggest that specific dimeric combinations of the 14-3-3 isoforms have CBP activity and that upregulation of this activity leads to an increase in DNA replication.  相似文献   

11.
12.
A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding.  相似文献   

13.
We have examined whether signal-mediated nucleocytoplasmic transport can be regulated by phosphorylation of the nuclear transport machinery. Using digitonin-permeabilized cell assays to measure nuclear import and export, we found that the phosphatase inhibitors okadaic acid and microcystin inhibit transport mediated by the import receptors importin beta and transportin, but not by the export receptor CRM1. Several lines of evidence, including the finding that transport inhibition is partially reversed by the broad specificity protein kinase inhibitor staurosporine, indicate that transport inhibition is due to elevated phosphorylation of a component of the nuclear transport machinery. The kinases and phosphatases involved in this regulation are present in the permeabilized cells. A phosphorylation-sensitive component of the nuclear transport machinery also is present in permeabilized cells and is most likely a component of the nuclear pore complex. Substrate binding by the importin alpha.beta complex and the association of the complex with the nucleoporins Nup358/RanBP2 and Nup153 are not affected by phosphatase inhibitors, suggesting that transport inhibition by protein phosphorylation does not involve these steps. These results suggest that cells have mechanisms to negatively regulate entire nuclear transport pathways, thus providing a means to globally control cellular activity through effects on nucleocytoplasmic trafficking.  相似文献   

14.
15.
16.
17.
18.
Transforming growth factor beta (TGF-β) stimulates protein complex formation on a TGF-β response element (TAE) found in the distal portion (−1624) of the collagen alpha 1(I) promoter. To identify the fibroblast proteins in this complex, an expression library constructed from human embryonic lung fibroblasts mRNA was screened using a tetramer of TAE. Y-box binding protein (YB-1), was identified as a protein in the TAE–protein complex. The protein expressed by phage clones formed a specific complex with labeled TAE but not mutated TAE (mTAE) similar to the complex formed with nuclear protein. Nuclear protein–TAE complexes isolated from native gels contained YB-1 by Western analysis. TGF-β treatment increased the amount of YB-1 protein in nuclear extracts, decreased its amount in cytoplasm, but did not alter the steady state levels of YB-1 mRNA. A full-length YB-1 protein expressed in human lung fibroblasts was primarily located in the nucleus with punctate staining in cytoplasmic regions. The expression of YB-1 decreased in the cytoplasm after 2 h of TGF-β treatment. Therefore, the increased binding activity seen in TGF-β-stimulated nuclear extracts was due primarily to relocalization of YB-1 from the cytoplasm to the nuclear compartment. Co-transfection of YB-1 cDNA with a collagen promoter–reporter construct caused a dose-dependent activation of collagen promoter activity in rat fibroblasts whereas the promoter with a mutation in the TAE element was not sensitive to YB-1 co-expression. In conclusion, we have identified YB-1 as a protein that interacts with a TGF-β response element in the distal region of the collagen alpha 1(I) gene. YB-1 protein activates the collagen promoter and translocates into the nucleus during TGF-β addition to fibroblasts, suggesting a role for this protein in TGF-β signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号