首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Bador  R Morelis  P Louisot 《Biochimie》1984,66(3):223-233
The temperature dependence of sialyltransferase (CMP-N-acetylneuraminate: D-galactosyl-glycoprotein N-acetyl-neuraminyltrasferase, EC 2.4.99.1) inhibition is described when 1-palmitoyl-sn-glycero-3-phosphorylcholine, or a saturated fatty acid (lauric, myristic or palmitic acid) or an equimolar mixture of the two components are added. Lysophospholipid and fatty acids have no appreciable effect on the optimal temperature for sialyltransferase activity. In the presence of lysophospholipid, the membranous sialyltransferase activity is decreased for all the temperature range tested. In contrast, the solubilized sialyltransferase activity is decreased for temperatures exceeding 29 degrees C. In the presence of saturated fatty acids, the membranous activity is decreased above a chain-length dependent temperature: 22 degrees, 25 degrees and 30 degrees C for lauric, myristic and palmitic acids, respectively. In contrast, the solubilized activity remains unchanged. In the presence of equimolar mixtures of lysophospholipid and fatty acid, the membranous activity is decreased above the same critical temperature as that described for fatty acids added alone. In contrast, the solubilized activity is decreased above 29 degrees C. From these observations, it is suggested that lysophospholipid inhibits the solubilized enzyme when the temperature exceeds the critical micellar temperature of this lipid. The fatty acids inhibit the microsomal enzyme probably by incorporating into the membrane. It is also suggested that equimolar mixtures of lysophospholipid and fatty acid give rise to molecular analogs of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine.  相似文献   

2.
The effect of growth temperature on the cellular fatty acid profiles of Bacillus subtilis and Bacillus megaterium was studied over a temperature range from 40 to 10 degrees C. As the growth temperature of B. subtilis was reduced, the lower-melting point anteiso-acids increased, while the higher-melting point iso-acids decreased. Consequently the ratio of branched- to straight-chain acids was unaffected by temperature, although changes in the position of fatty acid branching and the degree of unsaturated branched-chain fatty acids occurred. In B. megaterium a more complicated, biphasic behaviour was observed. Saturated, straight-chain and iso-branched acids decreased only from 40 degrees C down to 20-26 degrees C, and anteiso-acids decreased only from 20-26 degrees C to 10 degrees C, while unsaturated acids increased over the whole temperature range studied. Thus, in B. megaterium total branched-chain acids decreased and straight-chain acids increased as temperature decreased. However, the overall cellular content of lower-melting point fatty acids increased with decreasing temperature in both bacilli, and unsaturated fatty acids appeared to be essential components in the adaptation of the microbes to changes in temperatures. Since changes in the relative amounts of branched- and straight-chain fatty acid biosynthesis are known to reflect differences in fatty acid primers, temperature seems to affect not only the activity of the fatty acid desaturases but also the formation or availability of these primers. The results indicate, however, that notable species-specific regulatory features exist in this genus of bacteria.  相似文献   

3.
The effect of environmental temperature on the activity of liver microsomes of fish (Pimelodus maculatus) to desaturate and elongate oleic, linoleic and alpha-linolenic acids was studied. It was found that: 1. Fish kept at 14-15 degrees C had higher desaturation and elongation activity than animals kept at 29-30 degrees C. The ratio of activity was the same for the three fatty acids. 2. A decrease of the environmental temperature increased the V of linoleic acid desaturation to gamma-linolenic acid, but did not modify the approximate Km of the reaction. 3. The inactivation of the delta6-desaturase of microsomes separated from fish kept at 29-30 degrees C and 14-15 degrees C was the same when heated at 40 degrees C. However, the enzyme was deactivated faster when heated at 29-30 degrees C than at 14-15 degrees C. 4. The increase of the delta6-desaturation activity of the microsomes evoked by the decrease of the temperature of the aquarium was mostly compensated for by the correlative decrease of the specific reaction rate of the reaction. For this reason it is assumed that the adaptive change of the desaturation activity of the microsomes with the environmental temperature does not greatly modify the fatty acid composition of the fish.  相似文献   

4.
Hibernating mammals rely heavily on lipid metabolism to supply energy during hibernation. We wondered if the fatty acid binding protein from a hibernator responded to temperature differently than that from a nonhibernator. We found that the Kd for oleate of the liver fatty acid binding protein (1.5 microM) isolated from ground squirrel (Spermophilus richardsonii) was temperature insensitive over 5-37 degrees C, while the rat liver fatty acid binding protein was affected with the Kd at 37 degrees C being about half (0.8 microM) that found at lower temperatures. This same trend was observed when comparing the specificity of various fatty acids of differing chain length and degree of unsaturation for the two proteins at 5 and 37 degrees C. At the lower temperature, ground squirrel protein bound long-chain unsaturated fatty acids, particularly linoleate and linolenate, at least as well as at the higher temperature and matched requirements for these fatty acids in the diet. The most common long-chain fatty acid, palmitate, was a more effective ligand for ground squirrel liver fatty acid binding protein at 5 degrees C than at 37 degrees C, with the opposite occurring in the eutherm. Rat protein was clearly not adapted to function optimally at temperatures lower than the animal's body temperature.  相似文献   

5.
The fatty acid composition of the lipid A moiety of the lipopolysaccharide and phospholipid fractions of Proteus mirabilis changed significantly on varying the growth temperature. A decrease in the growth temperature from 43 degrees C to 15 degrees C resulted in a decrease in the palmitic acid content of the lipopolysaccharide from 19.4% of total fatty acids at 43 degrees C to 1.4% at 15 degrees C, and by the appearance of an unsaturated fatty acid residue, hexadecenoic acid. Changes in the 3-hydroxy-myristic acid content of the lipid A were minimal. The decrease in the growth temperature also resulted in a decrease in the saturated fatty acid content of the phospholipid fraction, which was accompanied by an increase in their fluidity, as measured by the freedom of motion of spin-labeled fatty acids incorporated into dispersions made of the phospholipids. Nevertheless, the fluidity obtained with membrane phospholipids extracted from the cells grown at various temperatures were essentially the same when fluidity was determined at the growth temperature, supporting the hypothesis that variations in the fatty acid composition of membrane phospholipids serve to produce membranes having a constant fluidity at different temperatures of growth.  相似文献   

6.
The fatty acid desaturase activity in cell extracts of Bacillus subtilis was characterized and found to be O2 dependent, NADH dependent, and cyanide sensitive. In cell fractionation studies, only 10% of the desaturase activity was recovered in the membrane fraction; the addition of cytosolic factors, which by themselves were devoid of activity, restored membrane activity to the level found in the unfractionated cell extracts. NADH was preferred over NADPH as an electron donor, and palmitoyl-coenzyme A was used preferentially over stearoyl-coenzyme A as the straight-chain fatty acid substrate. An increase in desaturase activity was observed when either the growth or the assay temperature was lowered from 37 to 20 degrees C, although the assay temperature appeared to be the more important parameter. Three protonophore-resistant mutants of B. subtilis and a comparable mutant of Bacillus megaterium had been found to possess reduced levels of unsaturated fatty acids in their membrane phospholipids; their protonophore resistance was abolished when grown in the presence of an unsaturated fatty acid supplement. All of these strains were found to be either significantly deficient in or totally lacking desaturase activity in comparison with their wild-type parent strains. Full, protonophore-sensitive revertants of the mutants had levels of desaturase activity comparable to those of the wild-type. Temperature-sensitive revertants of two of the mutants, which grew at 32 degrees C but not at 26 degrees C in the presence of protonophore, exhibited desaturase activity comparable to that of the wild-type at 26 degrees C but lacked activity at 32 degrees C. These results indicate that the biochemical basis for protonophore resistance in these Bacillus mutants is a fatty acid desaturase deficiency.  相似文献   

7.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   

8.
This is the first report on the effects of a single bout of swimming to exhaustion in cold water on rat erythrocyte deformability, aggregation and fatty acid composition in erythrocyte membranes. The results indicate that there was a significant decrease in body temperature of experimental rats swimming in water at 4 degrees C and 25 degrees C when compared to the control. Erythrocyte aggregation indices did not change after swimming in water at 4 degrees C whereas erythrocyte deformability increased at shear stress 1,13 [Pa] and 15,96 [Pa]. Physical effort performed in water at 4 degrees C when compared to the control group resulted in an increase in monounsaturated and polyunsaturated n-3 fatty acid content in erythrocyte membranes that influenced the increase in their fluidity and permeability even though that of polyunsaturated n-6 fatty acids decreased. Physical effort performed in 25 degrees C water resulted in an increase in saturated fatty acid content and a decrease in all polyunsaturated fatty acids and polyunsaturated n-6 fatty acids when compared to the control group. Swimming of untrained old rats in cold water affected rheological properties oferythrocytes in a negligible way while changes in the fatty acid composition of erythrocyte membranes were more pronounced.  相似文献   

9.
Non-esterified long-chain fatty acids reduce the extent of hypotonic hemolysis at a certain low concentration range but cause hemolysis at higher concentrations. This biphasic behavior was investigated at different temperatures (0-37 degrees C) for lauric (12:0), myristic (14:0), palmitoleic (16:1), oleic (cis-18:1) and elaidic (trans-18:1) acids. The results are summarized as follows: (A) the fatty acids examined exhibit a high degree of specificity in their thermotropic behavior; (B) oleic acid protects against hypotonic hemolysis even at the highest concentrations, up to 15 degrees C, when it becomes hemolytic, but only in a limited concentration range; (C) elaidic acid does not affect the osmotic stability of erythrocytes up to 20 degrees C, when it starts protecting: above 30 degrees C, it becomes hemolytic at the highest concentrations; (D) palmitoleic acid is an excellent protecting agent at all temperatures in a certain concentration range, becoming hemolytic at higher concentrations; (E) lauric acid protects up to 30 degrees C and becomes hemolytic only above this temperature; (F) myristic acid exhibits an extremely unusual behavior at 30 and 37 degrees C by having alternating concentration ranges of protecting and hemolytic effects; (G) there is a common critical temperature for hemolysis at 30 degrees C for saturated and trans-unsaturated fatty acids; (H) the initial slope of Arrhenius plots of percent hemolysis at the concentration of maximum protection is negative for cis-unsaturated fatty acids and positive for saturated and trans-unsaturated fatty acids.  相似文献   

10.
Cellular fatty acid compositions of five psychrotolerant groundwater isolates representing alpha- and beta-Proteobacteria were studied at temperatures ranging from 8 to 25 degrees C. Unsaturation of straight-chain fatty acids was the most common response to decreasing temperature and was detected in four of the isolates. On solid media, decrease of temperature resulted in a decrease of cyclopropane fatty acids in beta-proteobacterial isolates. The formation of cyclopropane fatty acids depended, however, to a greater extent on the growth phase than the temperature and increased drastically as the cells entered stationary phase. The alpha-proteobacterial isolates contained a branched C(19:1) fatty acid. The formation of the branched C(19:1) increased during growth in the same way as the cyclopropane fatty acids in beta-proteobacterial strains, indicating possibly an analogous formation of the branched fatty acid by methylation of the 18:1 fatty acid. Sphingomonas sp. K6 possessed a novel temperature-induced modification of lipid fatty acids. As temperature decreased from 25 to 8 degrees C, the fatty acid composition shifted from predominantly even-carbon fatty acids to odd-carbon fatty acids. The results show completely different fatty acid modifications in two strains of the same genus Sphingomonas.  相似文献   

11.
The outermost layer of the skin, the stratum corneum, consists of corneocytes surrounded by lipid domains. The main lipid classes in stratum corneum are cholesterol, ceramides (CER), and free fatty acids forming two crystalline lamellar phases. However, only limited information is available on whether the various lipid classes participate in the same crystalline lattices or if separate domains are formed within the lipid lamellae. In this article infrared spectroscopic studies are reported of hydrated mixtures prepared from cholesterol, human CER, and free fatty acids. Evaluation of the methylene stretching vibrations revealed a conformational disordering starting at approximately 60 degrees C for all mixtures. Examination of the rotational ordering (scissoring and rocking vibrations) of mixtures prepared from equimolar cholesterol and CER with a variation in the level of free fatty acids showed that at lower free fatty acid content orthorhombic and hexagonal domains coexist in the lipid lamellae. Increasing the fatty acid level to an equimolar cholesterol/CER/fatty acid mixture reveals the dominant presence of an orthorhombic lattice, confirming x-ray diffraction studies. Replacing the protonated free fatty acid chains by their perdeuterated counterparts demonstrates that free fatty acids and CER participate in the same orthorhombic lattice up to a level of slightly less than 1:1:0.75 cholesterol/CER/free fatty acids molar ratio but that free fatty acids also form separate domains within the lipid lamellae at equimolar ratios at room temperature. However, no evidence for this has been observed at 32 degrees C. Extrapolating these findings to the situation in stratum corneum led us conclude that in stratum corneum, fatty acids and CER participate in the orthorhombic lattice at 32 degrees C, the skin temperature.  相似文献   

12.
The effect of growth temperature on the cellular fatty acid composition of sulphate-reducing bacteria (SRB) was studied in 12 species belonging to eight genera including psychrophiles and mesophiles. Most of these species were of marine origin. The investigated SRB with the exception of four Desulfobacter species exhibited only a minor increase in the proportion of cis-unsaturated fatty acids (by < or = 5% per 10 degrees C) when the growth temperature was decreased; psychrophiles maintained their typically high content of cis-unsaturated fatty acids (around 75% of total fatty acids) nearly constant. The four Desulfobacter species, however, increased the proportion of cis-unsaturated among total fatty acids significantly (by > or =14% per 10 degrees C; measured in late growth phase) with decreasing growth temperature. The ratio between unsaturated and saturated fatty acids in Desulfobacter species changed not only with the growth temperature, but also with the growth state in batch cultures at constant temperature. Changes of cellular fatty acids were studied in detail with D. hydrogenophilus, the most psychrotolerant (growth range 0-35 degrees C) among the mesophilic SRB examined. Desulfobacter hydrogenophilus also formed cis-9,10-methylenehexadecanoic acid (a cyclopropane fatty acid) and 10-methylhexadecanoic acid. At low growth temperature (12 degrees C), the relative amount of these fatty acids was at least threefold lower; this questions the usefulness of 10-methylhexadecanoic acid as a reliable biomarker of Desulfobacter in cold sediments.  相似文献   

13.
Cells of two strains of Listeria monocytogenes CNL 895807 and Scott A were grown to late exponential phase at different growth temperatures (37, 20 and 4 degrees C) with or without NaCl (7%), and their fatty acid compositions were analysed. The results showed that low thermal adaptation response of L. monocytogenes CNL was different than that of the Scott A strain, and it was based on both an increase of anteiso-branched-chain fatty acids and a significant decrease of straight-chain fatty acids. However, the main modifications observed in the Scott A strain when grown at a low temperature were a decrease of the proportion of ai17:0 and an increase of ai15:0. In hyperosmotic medium and over the entire temperature range (4 degrees C, 20 degrees C and 37 degrees C) the two L. monocytogenes strains showed a cellular fatty acid profile dominated by ai15:0. In addition, a decrease of the two major straight-chain fatty acids (14:0 and 16:0) was observed in the CNL strain. These results demonstrated that the CNL strain showed different behaviours of low thermal and salt adaptation to maintain membrane fluidity, which are based both on an increase of anteiso-branched-chain fatty acids, and a significant decrease of straight-chain fatty acids.  相似文献   

14.
Fatty acids newly synthesized by Brevibacterium ammoniagenes grown at different temperatures were analyzed. The assay temperature, not the growth temperature, was found to be the major factor affecting the unsaturated/saturated ratio of newly synthesized fatty acids in logarithmic-phase cells. However, in the stationary-phase cells the growth temperature also affected the product profile significantly; cells grown at 7 degrees C produced relatively more oleate and stearate and less palmitate and hexadecenoate when shifted up to 37 degrees C than did cells grown and assayed at 37 degrees C. The unsaturated/saturated ratio as well as average chain length of fatty acids also varied along with the progress of isothermal growth phase. These changes in fatty acid product profiles observed in vivo could be mimicked in vitro assays of the fatty acid synthetase by changing malonyl-CoA concentrations. Our results suggest that the malonyl-CoA concentration is a factor which, in addition to temperature, determines growth-phase-dependent and growth-temperature-dependent changes in the unsaturated/saturated ratios of fatty acids.  相似文献   

15.
The free fatty acid content of spinach chloroplasts, isolated at pH 5.8 to 8.0, has been found to vary between 3.1 and 5.5% of the total chloroplast fatty acids. When chloroplasts were incubated at room temperature for 2 hours, the free fatty acids increased by 42% and the Hill activity decreased by 70%. After 2 hours of incubation at 37 degrees , the free fatty acids increased about 3-fold and the Hill activity decreased to almost 0. The addition of crystalline bovine serum albumin largely prevented the loss of Hill activity at room temperature and at 5 degrees , but had little effect during incubation at 37 degrees . Both the release of free fatty acids and the loss of Hill activity were pH dependent. The losses were the least during incubation at pH 5.8 and the greatest during incubation at pH 8.0. The major free fatty acids released at pH 5.8 were saturated, while those released at pH 7.0 or 8.0 were mainly the unsaturated acids, alpha-linolenic acid and hexadecatrienoic acid.  相似文献   

16.
1. Pseudomonas fluorescens was grown at various temperatures between 5 degrees C and 33 degrees C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5 degrees C and 22 degrees C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure-area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5-22 degrees C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5 degrees C and 22 degrees C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids.  相似文献   

17.
Fatty acid synthetase (FAS) preparations from Saccharomyces cerevisiae cells grown at either 35 or 10 degrees C produced the same products at different temperatures and showed quite similar temperature-dependencies in Arrhenius plots, with break points at 25 degrees C. This break point does not appear to reflect a phase transition of phospholipids present in the purified FAS preparations but rather is associated with protein conformational changes. S. cerevisiae cells grown at 35 degrees C and then shifted to 10 degrees C produced fatty acids with a shorter average chain length than those fatty acids synthesized at 10 degrees C by cells already adapted to 10 degrees C (hyper response). Acetyl-CoA carboxylase activity was relatively higher in the cells grown at 35 degrees C than in the cells grown at 10 degrees C; moreover, fatty acids with longer average chain lengths were synthesized in vitro at higher malonyl-CoA concentrations, which was consistent with the difference in the average chain lengths of newly synthesized fatty acids in cells grown at 35 and 10 degrees C. However, the activity levels of acetyl-CoA carboxylase and fatty acid synthetase alone did not account for the hyper response phenomena.  相似文献   

18.
K Kobayashi  H Suginaka  I Yano 《Microbios》1987,51(206):37-42
The fatty acid composition of representative Candida species was examined by gas-liquid chromatography (GLC) using a polar column. The major fatty acids were C14:0, C16:0, C18:0 saturated, C16:1 and C18:1 monoenoic series, with or without C18 polyunsaturated acids (C18:2 and C18:3). In Torulopsis glabrata and Saccharomyces cerevisiae the C18:2 and C18:3 acids were not found, but the C10:0 and C12:0 acids were detected in S. cerevisiae. These results indicated that the Candida genus could be distinguished from Torulopsis and Saccharomyces genera by GLC analysis of fatty acids. Quantitative differences in the fatty acid composition between cells grown at high temperature (37 degrees C) and low temperature (25 degrees C) were found generally in Candida species, and the amounts of C18 polyunsaturated acids (C18:2 and C18:3) increased in the cells grown at 25 degrees C. Each Candida species showed a characteristic profile in fatty acid composition. Determination of the cellular fatty acid composition in Candida species is likely to be useful for the grouping or chemotaxonomy of newer isolates of Candida species.  相似文献   

19.
Total phospholipids were extracted from cells of temperature sensitive unsaturated fatty acid auxotrophs of Escherichia coli (K-12 UFAts) grown at 28degrees C (PL28), and at 42degrees C in the presence of 2% KCl as an osmotic stabilizer (PL42 (KCl)). From the analysis of fatty acids, it was shown that the content of unsaturated fatty acids of PL42 (KCl) is only 9% of the total fatty acids, while that of PL28 is 54%. The thermal phase transitions of the bilayers prepared from the phospholipid fractions were studied by proton magnetic resonance. The line widths of the methylene signals and the sums of the methylene and methyl signal intensities were plotted against reciprocal values of absolute temperature 1/T or temperature itself. From the plots phase transitions were detected at about 19degrees C for PL28 and at 43degrees C for PL42 (KCl). In spite of its complex composition of fatty acids a highly cooperative transition was observed in the case of PL42 (KCl). It was also suggested that the phospholipids bilayers in the biomembranes of this strain at the growth temperature (42 degrees C) are in the state where the gel and liquid crystalline phases coexist.  相似文献   

20.
The solubility in water of saturated fatty acids with even carbon numbers from 8 to 18 was measured in the temperature range of 60 to 230 degrees C and at a pressure of 5 or 15 MPa. The pressure had no significant effect on the solubility. The solubility of the fatty acids increased with increasing temperature. At temperatures higher than about 160 degrees C, the logarithm of the solubility in mole fraction was linearly related to the reciprocal of the absolute temperature for each fatty acid, indicating that the water containing solubilized fatty acid molecules formed a regular solution at the higher temperatures. The enthalpy of a solution of the fatty acids in water, which was evaluated from the linear relationship at the given temperatures, increased linearly with the carbon number of the fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号