首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollution of the environment with toxic metals is a result of many human activities, such as mining and metallurgy, and the effects of these metals on the ecosystems are of large economic and public‐healthsignificance. This paper presents the features and advantages of the unconventional removal method of heavy metals – biosorption – as a part of bioremediation. Bioremediation consists of a group of applications, which involvethe detoxification of hazardous substances instead of transferring them from one medium to another, by means of microbes and plants. This process is characterized as less disruptive and can be often carried out on site, eliminating the need to transport the toxic materials to treatment sites. The biosorption (sorption of metallic ions from solutions by live or dried biomass) offers an alternative to the remediation of industrial effluents as well as the recovery of metals contained in other media. Biosorbents are prepared from naturally abundant and/or waste biomass. Due to the high uptake capacity and very cost‐effective source of the raw material, biosorption is a progression towards a perspective method. The mechanism by which microorganisms take up metals is relatively unclear, but it has been demonstrated that both living and non‐living biomass may be utilized in biosorptive processes, as they often exhibit a marked tolerance towards metals and other adverse conditions. One of their major advantages is the treatment of large volumes of effluents with low concentrations of pollutants. Models developed were presented to determine both the number of adsorption sites required to bind each metal ion and the rate of adsorption, using a batch reactor mass balance and the Langmuir theory of adsorption to surfaces or continuous dynamic systems. Two main categories of bioreactors used in bioremediation – suspended growth and fixed film bioreactors – are discussed. Reactors with varying configurations to meet the different requirements for biosorption are analyzed considering two major groups of reactors – batch reactors and continuous reactors. Biosorption is treated as an emerging technology effective in removing even very low levels of heavy metal.  相似文献   

2.
This paper provided information on the use of linear sweep anodic stripping voltammetry for evaluating the process of copper biosorption onto Pseudomonas aeruginosa. This technique was suited to determine the concentration of free copper ion on site on the mercaptoethane sulfonate modified gold electrode surface without any pretreatment. It was in favor of the study of kinetic process as the fast changing kinetic data characteristic just after the beginning of biosorption could be accurately depicted. Based on the electrochemical results, the kinetics and equilibrium of biosorption were systematically examined. The pseudo-second-order kinetic model was used to correlate the kinetic experimental data and the kinetic parameters were evaluated. The Langmuir and Freundlich models were applied to describe the biosorption equilibrium. It was found that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. Maximum adsorption capacity of copper ion onto Pseudomonas aeruginosa was 0.9355 μmol mg−1 (about 59.4417 mg g−1).  相似文献   

3.
In our study, we isolated the isolate Trichoderma SP2F1 from sediment samples from the Penchala River, heavily contaminated with effluents from nearby industrial areas. Qualitative and quantitative screening using plate and broth assay, respectively, supplemented with various concentrations of Cu(II) showed the isolate was able to tolerate 6 mM CuSO4, although growth was also detected in broths with 10 mM CuSO4. Trichoderma spp. was able to remove Cu(II) in aqueous solutions in both viable and non-viable cell forms. Bioaccumulation capacity of viable SP2F1 cells removed 19.60 mg g−1 of Cu(II) after 168 h incubation, while the maximum Cu(II) biosorption capacity for non-viable SP2F1 cells was 28.75 mg g−1 of Cu(II). Results here showed that Trichoderma spp isolate SP2F1 has good potential for application in Cu(II) removal, can be used to treat sewage waste by applying either in viable or non-viable cell forms.  相似文献   

4.
Mercury (Hg) resistance is widespread among microorganisms and is based on the intracellular transformation of Hg(II) to less toxic elemental Hg(0). The use of microbial consortia to demercurize polluted wastewater streams and environments has been demonstrated. To develop efficient and versatile microbial cleanup strategies requires detailed knowledge of transport and reaction rates. This study focuses on the kinetics of the key enzyme of the microbial transformation, e.g., the mercuric reductase (MerA) under conditions closely resembling the cell interior. To this end, previously constructed and characterized Pseudomonas putida strains expressing MerA from Serratia marcescens were applied. Of the P. putida strains considered in this study P. putida KT2442::mer73 constitutively expressing broad spectrum mercury resistance (merTPAB) yielded the highest mercuric reductase (MerA) activity directly after cell disruption. MerA in the raw extract was further purified (about 100 fold). Reduction rates were measured for various substrates (HgCl2, Hg2SO4, Hg(NO3)2 and phenyl mercury acetate) up to high concentrations dependent on the purification grade. In all cases, a pronounced substrate inhibition was found. The kinetic constants determined for the cell raw extract are in agreement with those measured for intact cells. However, the rate data exhibit reduced affinity and inhibition with rising purification grade (specific activity). Therefore, the findings seemingly point to reactions preceding the catalytic reduction. Based on simplified assumptions, a kinetic model is suggested which reasonably describes the experimental findings and can advantageously be applied to the bioreactor design.  相似文献   

5.
Lanthanum biosorption by a Pseudomonas sp. was characterized in terms of equilibrium metal loading, model fitting, kinetics, effect of solution pH, lanthanum–bacteria interaction mechanism and recovery of sorbed metal. Lanthanum sorption by the bacterium was rapid and optimum at pH 5.0 with equilibrium metal loading as high as 950 mg g−1 biomass dry wt. Scatchard model and potentiometric titration suggested the presence of at least two types of metal-binding sites, corresponding to a strong and a weak binding affinity. The chemical nature of metal–microbe interaction has been elucidated employing FTIR spectroscopy, energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD). FTIR spectroscopy and XRD analysis revealed strong involvement of cellular carboxyl and phosphate groups in lanthanum binding by the bacterial biomass. EDX and the elemental analysis of the sorption solution ascertained the binding of lanthanum with the bacterial biomass via displacement of cellular potassium and calcium. Transmission electron microscopy exhibited La accumulation throughout the bacterial cell with some granular deposits in cell periphery and in cytoplasm. XRD confirmed the presence of LaPO4 crystals onto the bacterial biomass after La accumulation for a long period. A combined ion-exchange–complexation–microprecipitation mechanism could be involved in lanthanum accumulation by the biomass. Almost 98% of biomass-bound La could be recovered using CaCO3 as the desorbing agent.  相似文献   

6.
Three different kinds of Phanerochaete chrysosporium (NaOH‐treated, heat‐inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50–700 mg/L. Maximum biosorption capacities of NaOH‐treated, heat‐inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH‐treated > heat‐inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH‐treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption‐desorption cycles without any considerable loss in biosorption capacity. The alkali‐treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater.  相似文献   

7.
8.
The biosorption of Pb(II), Cd(II), and Co(II), respectively, from aqueous solution on green algae waste biomass was investigated. The green algae waste biomass was obtained from marine green algae after extraction of oil, and was used as low-cost biosorbent. Batch shaking experiments were performed to examine the effects of initial solution pH, contact time and temperature. The equilibrium biosorption data were analyzed using two isotherm models (Langmuir and Freundlich) and two kinetics models (pseudo-first order and pseudo-second order). The results indicate that Langmuir model provide best correlation of experimental data, and the pseudo-second order kinetic equation could best describe the biosorption kinetics of considered heavy metals.  相似文献   

9.
红螺菌吸附铜的动力学与脱附研究   总被引:2,自引:0,他引:2  
黄富荣  尹华  彭辉  刘慧璇 《生态科学》2004,23(1):35-37,46
研究了红螺菌(Rhodospirillum)对Cu~(2 )的吸附动力学行为,在一定的条件下,吸附在45 min达到平衡,吸附平衡时最大吸附量为48.23 mg·g~(-1)。应用准一级和准二级反应动力学模型进行数据分析,结果表明菌体对Cu~(2 )的吸附符合准二级动力学模型。比较分析了多种脱附剂对菌体脱附,EDTA和柠檬酸是较有效的洗脱剂,脱附率分别为86.4%、66.9%;无机酸及无机盐对菌体的脱附效果很差,脱附率在20%左右。X-射线衍射分析表明,菌体吸附Cu~(2 )后没有形成新晶相,并且菌体部分晶相转变为非晶相。  相似文献   

10.
Due to rising populations and human activities, heavy metals (HM) toxicity has become a serious problem for all life forms. The present study deals with isolating and identifying lead-resistant bacteria from contaminated wastewater of tanneries effluents. Two isolated strains were identified as Bacillus cereus (ID1), and Bacillus sp. (ID3), and both strains resisted a 25 mM concentration of Lead nitrate (Pb (NO3)2). After four days of treatment, Bacillus cereus (ID1) showed 80% lead uptake, and Bacillus sp. (ID3) showed 88%. Lead uptake was confirmed by Energy dispersive X-Ray (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) showed that structural alterations had occurred in functional groups of the treated samples compared to the controls. Our research indicates that these Bacillus strains may be useful in bioremediating heavy metals from polluted environments. Further investigation into the processes involved in the uptake and homeostasis of heavy metals by these strains is required, as is the identification of the genes and enzymes responsible for Pb-bioremediation.  相似文献   

11.
A strain of Pseudomonas sp. CZ1, which was isolated from the rhizosphere of Elsholtzia splendens obtained from the heavy-metal-contaminated soil in the north-central region of the Zhejiang province of China, has been studied for tolerance to copper (Cu) and zinc (Zn) and its capacities for biosorption of these metals. Based on 16S ribosomal DNA sequencing, the microorganism was closely related to Pseudomonas putida. It exhibited high minimal inhibitory concentration values (about 3 mmol Cu.L-1 and 5 mmol Zn.L-1) for metals and antibiotic resistance to ampicillin but not to kanamycin. Based on the results of heavy metal toxicity screening, inhibitory concentrations in solid media were lower than those in liquid media. Moreover, it was found that the toxicity of Cu was higher than that of Zn. Pseudomonas putida CZ1 was capable of removing about 87.2% of Cu and 99.8% of Zn during the active growth cycle, with specific biosorption capacities of 24.2 and 26.0 mg x L-1, respectively. Although at low concentrations, Cu and Zn slightly damage the surface of some cells, P. putida demonstrated high capacities for biosorption of Cu and Zn. Since P. putida CZ1 could grow in the presence of significant concentrations of metals and because of its high metal uptake capacity in aerobic conditions, this bacterium may be potentially applicable in bioreactors or in situ bioremediation of heavy-metal-contaminated aqueous or soil systems.  相似文献   

12.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

13.
Heavy metal contamination of water bodies has been a cause of grave concern around the globe. Analysis of various industrial effluents has revealed a perilous level of Cr (VI) and Ni (II). Pseudomonas aeruginosa is an extracellular polymeric substances (EPSs) producing bacterium. EPS has a great potential in the sequestration of heavy metal ions. In the present study efforts have been made to understand the effect of time, pH, and temperature on production of EPS by P. aeruginosa (MTCC 1688). The extracted EPS has been applied for removal of Ni (II) and Cr (VI) ions from aqueous system. The results revealed that highest EPS yield (26 mg/50 mL) can be obtained after 96 h of incubation at pH 6 and 32 °C temperature in 50 mL of culture. Treatment of 10 mg/L Cr (VI) and Ni (II) with 30 mg/L EPS resulted in the removal of 26% and 9% of Cr (VI) and Ni (II), respectively. Fourier-transform infrared spectral analysis revealed the involvement of –OH, –NH, C–O, diketone, and ester functional groups of EPS in the attachment of Cr (VI) ion while involvement of amide and –CO groups in Ni (II) binding with EPS. Scaling-up the production of EPS using bioreactor may further help in developing an efficient process for treatment of water polluted with Cr and Ni.  相似文献   

14.
Industrial wastewaters contain various heavy metal components and therefore threaten aquatic bodies. Heavy metals can be adsorbed by living or non‐living biomass. Submerged aquatic plants can be used for the removal of heavy metals. This paper exhibits the comparison of the adsorption properties of two aquatic plants Myriophyllum spicatum and Ceratophyllum demersum for lead, zinc, and copper. The data obtained from batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (qmax) were obtained for both plant species and each metal. The maximum adsorption capacities (qmax) achieved with M. spicatum were 10.37 mg/g for Cu2+, and 15.59 mg/g for Zn2+ as well as 46.49 mg/g for Pb2+ and with C. demersum they were 6.17 mg/g for Cu2+, 13.98 mg/g for Zn2+ and 44.8 mg/g for Pb2+. It was found that M. spicatum has a better adsorption capacity than C. demersum for each metal tested. Gibbs free energy and the specific surface area based on the qmax values were also determined for each metal.  相似文献   

15.
The dioxin-degrading strain Pseudomonas veronii PH-03 was isolated from contaminated soil by selective enrichment techniques. Strain PH-03 grew on dibenzo-p-dioxin and dibenzofuran as a sole carbon source. Further, 1-chlorodibenzo-p-dioxin, 2-chlorodibenzo-p-dioxin and other dioxin metabolites, salicylic acid, and catechol were also metabolized well. Resting cells of strain PH-03 transformed dibenzo-p-dioxin, dibenzofuran, 2,2',3-trihydroxybiphenyl, and some chlorodioxins to their corresponding metabolic intermediates such as catechol, salicylic acid, 2-hydroxy-(2-hydroxyphenoxy)-6-oxo-2,4-hexadienoic acid, and chlorocatechols. The formation of these metabolites was confirmed by comparison of gas chromatography-mass spectrometry (GC-MS) data with those of authentic compounds. Although we did observe the production of 3,4,5,6-tetrachlorocatechol (3,4,5,6-TECC) from 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) with resting cell suspensions of PH-03, growth of strain PH-03 in the presence of 1,2,3,4-TCDD was poor. This result suggests that strain PH-03 is unable to utilize 3,4,5,6-TECC, even at very low concentration (0.01 mM) due to its toxicity. In cell-free extracts of DF-grown cells, 2,2',3-trihydroxybiphenyl dioxygenase, 2-hydroxy-6-oxo-6-phenyl-2,4-hexadienoic acid hydrolase, and catechol-2,3-dioxygense activities were detected. Moreover, the activities of meta-pyrocatechase and 2,2',3-trihydroxybiphenyl dioxygenase from the crude cell-free extracts were inhibited by 3-chlorocatechol. However, no inhibition was observed in intact cells when 3-chlorocatechol was formed as intermediate.  相似文献   

16.
The optimum conditions for biosorption and bioaccumulation of lead and nickel were investigated by using a tolerant bacterial strain isolated from El-Malah canal, Assiut, Egypt, and identified as Pseudomonas aeruginosa ASU 6a. The experimental adsorption data were fitted towards the models postulated by Langmuir and Freundlich isotherm equations. The binding capacity by living cells is significantly lower than that of dead cells. The maximum biosorption capacities for lead and nickel obtained by using non-living cells and living cells were 123, 113.6 and 79, 70 mg/g, respectively. The biosorptive mechanism was confirmed by IR analysis and from the identification nature of acidic and basic sites. Moreover, the postulated mechanism was found to depend mainly on ionic interaction and complex formation.  相似文献   

17.
Abstract

In this work, the potential use of the immobilized cells of Chryseomonas luteola TEM 05 for the removal of Cr+6, Cd+2 and Co+2 ions from aqueous solutions was investigated. The living cells of C. luteola TEM 05 were firstly entrapped both in carrageenan and chitosan coated carrageenan gels and then used in biosoption of the metal ions in batch reactors at pH 6.0, 25°C, in 100 mg L?1 of each metal solution. Besides this, a process of competitive biosorption of these metal ions was also described and compared to single metal ion adsorption in solution. According to the immobilization results, the replacement of KCl by KCl-chitosan as gelling agent improved the mechanical strength and thermal stability of the gel. In addition, the C. luteola TEM 05 immobilized carrageenan-chitosan gel system was quite more efficient for the fast adsorption of metal ions from aqueous solution than the carrageenan gels without biomass.  相似文献   

18.
Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of blood alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) were detected in heavy metals-treated mice. Histopathologically, the liver sections from heavy metals-treated mice showed severe changes including disarrangement of hepatic strands, rupture in hepatocytes, advanced hepatocellular necrosis, dilation and congestion of blood vessels with hemorrhage, dense lymphocytic infiltration round the central vein and dark stained hepatocytic nuclei indicating cell pycnosis. Administration of vitamin E at a dose of 50 IU/kg body weight, five times weekly improved the observed biochemical and histopathological changes induced by these heavy metals intoxication. Hence, the results of this study suggest that vitamin E protects against these heavy metals-induced liver injury and the attenuating effect of vitamin E may be due to its antioxidant activity.  相似文献   

19.
The adsorption of the two metal ions Cu and Zn in a single-component system by Cymodocea nodosa, a brown alga, under different pH conditions was investigated. The solution pH significantly affected the exhibited uptake, being maximum at a pH value of 4.5. Multi-component mixture biosorption in aqueous solutions is also reported. A comparison was made between the single-component saturation uptake and the multi-component uptakes. To evaluate the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The isotherms indicate a competitive uptake with Cu being preferentially adsorbed. In addition, different tests were carried out to compare the process efficiency working continuously in small columns.  相似文献   

20.
The plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd2+, Ni2+, Zn2+, and Cu2+ on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO4, NiSO4, CuSO4, and ZnSO4 were used in concentrations of 5–20 µM in this study. It was found that Cd, Ni, and Cu cause dose-dependent primary root growth inhibition and alteration of the root morphology, whereas Zn slightly stimulates root growth and does not affect the morphology of Arabidopsis roots. This growth inhibition/stimulation correlated with the various sensitivities of microfilaments to Cd, Ni, Cu, and Zn action. It was established that Cd, Ni, and Cu affected predominantly the actin filaments of meristematic cells. Cells of transition and elongation zones demonstrated strong actin filament sensitivity to Cd and Cu. Microfilaments of elongating root cells were more sensitive to Ni and Cu. Although Cd, Ni, and Cu stimulated root hair growth after long-term treatment, actin filaments were destroyed after 1 h exposure with these metals. Zn did not disrupt native actin filament organization in root cells. Thus, our investigation shows that microfilaments act as sensitive cellular targets for Cd, Ni, and Cu. More data on effects on native actin filaments organization would contribute to a better understanding of plant tolerance mechanisms to the action of these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号