首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Acyl-d-amino acid amidohydrolases (d-aminoacylases) are often used as tools for the optical resolution of d-amino acids, which are important products with applications in industries related to medicine and cosmetics. For this study, genes encoding d-aminoacylase were cloned from the genomes of Streptomyces spp. using sequence-based screening. They were expressed by Escherichia coli and Streptomyces lividans. Almost all of the cell-free extracts exhibit hydrolytic activity toward N-acetyl-(Ac-)d-Phe (0.05–6.32 μmol min?1 mg?1) under conditions without CoCl2. Addition of 1 mM CoCl2 enhanced their activity. Among them, the highest activity was observed from cell-free extracts prepared from S. lividans that possess the d-aminoacylase gene of Streptomyces sp. 64E6 (specific activities were, respectively, 7.34 and 9.31 μmol min?1 mg?1 for N-Ac-d-Phe and N-Ac-d-Met hydrolysis). Furthermore, when using glycerol as a carbon source for cultivation, the recombinant enzyme from Streptomyces sp. 64E6 was produced in 4.2-fold greater quantities by S. lividans than when using glucose. d-Aminoacylase from Streptomyces sp. 64E6 showed optimum at pH 8.0–9.0. It was stable at pH 5.5–9.0 up to 30 °C. The enzyme hydrolyzed various N-acetyl-d-amino acids that have hydrophobic side chains. In addition, the activity toward N-chloroacetyl-d-Phe was 2.1-fold higher than that toward N-Ac-d-Phe, indicating that the structure of N-acylated portion of substrate altered the activity.  相似文献   

2.
It has long been believed that amino acids comprising proteins of all living organisms are only of the l-configuration, except for Gly. However, peptidyl d-amino acids were observed in hydrolysates of soluble high molecular weight fractions extracted from cells or tissues of various organisms. This strongly suggests that significant amounts of d-amino acids are naturally present in usual proteins. Thus we analyzed the d-amino acid contents of His-tag-purified β-galactosidase and human urocortin, which were synthesized by Escherichia coli grown in controlled synthetic media. After acidic hydrolysis for various times at 110°C, samples were derivatized with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole (NBD-F) and separated on a reverse-phase column followed by a chiral column into d- and l-enantiomers. The contents of d-enantiomers of Ala, Leu, Phe, Val, Asp, and Glu were determined by plotting index d/(d + l) against the incubation time for hydrolysis and extrapolating the linear regression line to 0 h to eliminate the effect of racemization of amino acids during the incubation. Significant contents of d-amino acids were reproducibly detected, the d-amino acid profile being specific to an individual protein. This finding indicated the likelihood that d-amino acids are in fact present in the purified proteins. On the other hand, the d-amino acid contents of proteins were hardly influenced by the addition of d- or l-amino acids to the cultivation medium, whereas intracellular free d-amino acids sensitively varied according to the extracellular conditions. The origin of these d-amino acids detected in proteins was discussed.  相似文献   

3.
Enumerations of tartrate-fermenting anaerobic bacteria with l-, d-, and m-tartrate as substrates revealed that l-tartrate fermenters outnumbered d- and m-tartrate fermenters by one to three orders of magnitude in all three anoxic environments studied. Highest numbers of tartrate-fermenting bacteria were found in freshwater creek sediments, less in polluted marine channels, and lowest numbers in anoxic sewage digestor sludge. Prevailing bacteria were isolated on every tartrate enantiomer. They all degraded tartrates via oxaloacetate. d- and m-tartrate-fermenting anaerobes were able to ferment l-tartrate as well, and were assigned to the genera Bacteroides, Acetivibrio, and Ilyobacter. l-Tartrate-fermenting anaerobes only utilized this enantiomer, and were characterized in more detail. Fermentation products on tartrate, citrate, pyruvate, and oxaloacetate were acetate, formate, and carbon dioxide. On fructose and glucose, also ethanol was formed. Freshwater isolates were Gram-positive cocci with large slime capsules, and were described as a new species, Ruminococcus pasteurii. Saltwater isolates were Gram-negative short rods, and were also described as a new species, Ilyobacter tartaricus. The guanosine-plus-cytosine content of the DNA was 45.2% and 33.1%, respectively.  相似文献   

4.
Exopolysaccharide (EPS) is produced by many marine bacteria and is important for cell aggregation in the ocean. d-amino acids are important components in bacteria and are recently recognized as signal molecules for regulation of bacterial growth. In this study, the effects of d-amino acids on EPS production, cell aggregation, and metabolic activity were investigated using an EPS-producing bacterium Alteromonas macleodii strain JL2069. EPS produced by JL2069 was inhibited by 1 mM of d-Ala and d-Ser, but not by d-Glu. The formation of particulate organic matter (POM) was promoted by the three amino acids. A new technique of microcalorimetry analysis indicated that the metabolic activity of the JL2069 cells was inhibited by these d-amino acids. Our results suggested that d-amino acids may reduce the bacterial metabolism by changing bacterial lifestyle from planktonic to cell aggregation growth which occurs independent of the production of EPS.  相似文献   

5.
Cyclic depsipeptide FK228 with an intramolecular disulfide bond is a potent inhibitor of histone deacetylases (HDAC). FK228 is stable in blood because of its prodrug function, whose –SS– bond is reduced within the cell. Here, cyclic peptides with –SS– bridges between a variety of amino acids were synthesized and assayed for HDAC inhibition. Cyclic peptide 3, cyclo(-l-amino acid-l-amino acid-l-Val-d-Pro-), with an –SS– bridge between the first and second amino acids, was found to be a potent HDAC inhibitor. Cyclic peptide 7, cyclo(-l-amino acid-d-amino acid-l-Val-d-Pro-), with an –SS– bridge between the first and second amino acids, was also a potent HDAC inhibitor.  相似文献   

6.
Dietary intake of l-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, l-alanine and l-serine were preferred over their d-enantiomer counterparts, while no such effect was observed for l-threonine vs. d-threonine; (2) these behavioral patterns were closely associated with the ability of l-amino acids to promote increases in respiratory exchange ratios such that those, and only those, l-amino acids able to promote increases in respiratory exchange ratios were preferred over their d-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.  相似文献   

7.
3-Phenyllactic acid (PLA) is an antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi. Enzymatic production of PLA can be carried out from phenylpyruvic acid by lactate dehydrogenase (LDH); however, the enzymatic reaction is accompanied by NADH oxidation that inhibits PLA biotransformation. Here, NADH regeneration was achieved using the formate dehydrogenase from Ogataea parapolymorpha and introduced into the d-PLA production process using the d-LDH from Pediococcus pentosaceus. Optimum PLA production by dual enzyme treatment was at pH 6.0 and 50 °C with both enzymes at 0.4 μM. Using 0.2 mM NADH, d-PLA production by NADH regeneration system reached 5.5 mM, which was significantly higher than that by a single-enzyme reaction.  相似文献   

8.
The reaction of potassium tetrachloroplatinate(II) with six representative sulfurcontaining amino acids, namely,d- andl-cysteine,d- andl-methionine and its methyl ester hydrochloride gives the corresponding enantiomerically purecis-dichloroplatinum(II) complexes. This represents the first reported series of well-characterized enantiomerically pure platinum(II) complexes for bothd- andl-amino acids. The spectroscopic properties, including IR,1H-NMR, and13C NMR, of these complexes and their configuration are discussed.  相似文献   

9.
The homologous gene of D-amino acid oxidase (DAO) in prokaryotic organisms is predominantly found in a group of bacteria called the Actinobacteria. We have analyzed the DAO of the model actinomycete Streptomyces coelicolor and the effect of D-amino acids on this bacterium. When expressed in Escherichia coli, the translated product of the putative dao gene of this bacterium exhibited oxidase activity against neutral and basic D-amino acids, with a higher activity toward D-valine and D-isoleucine, but not to their corresponding L-amino acids. This substrate specificity was largely different from that of the DAO of the actinobacterium Arthrobacter protophormiae. The gene message and DAO activity were constitutively detected in S. coelicolor cells, and unlike eukaryotic DAOs, the presence of a D-amino acid did not significantly induce expression. The D-amino acids that were a good substrate for S. coelicolor DAO inhibited cell growth, delayed morphological development and affected cell morphology, but they did not inhibit biofilm formation. Disruption of the dao gene had no effect on the morphology and morphological development of S. coelicolor cells, the assimilation of D-valine or the sensitivity to growth inhibition by D-valine under the experimental conditions, showing that in this bacterium DAO does not play a significant role in either morphological development or the assimilation and detoxification of D-amino acids.  相似文献   

10.
γ-Glutamylamine cyclotransferase (gGACT) catalyzes the intramolecular cyclization of a variety of l-γ-glutamylamines producing 5-oxo-l-proline and free amines. Its substrate specificity implicates it in the downstream metabolism of transglutaminase products, and is distinct from that of γ-glutamyl cyclotransferase which acts on l-γ-glutamyl amino acids. To elucidate the mechanism by which gGACT distinguishes between l-γ-glutamylamine and amino acid substrates, the specificity of the rabbit kidney enzyme for the amide region of substrates was probed through the kinetic analysis of a series of l-γ-glutamylamines. The isodipeptide N ?-(l-γ-glutamyl)-l-lysine 1 was used as a reference. The kinetic constants of the l-γ-glutamyl derivative of n-butylamine 7, were nearly identical to those of 1. Introduction of a methyl or carboxylate group on the carbon adjacent to the side-chain amide nitrogen in l-γ-glutamylamine substrates resulted in a dramatic decrease in substrate properties for gGACT thus providing an explanation of why gGACT does not act on l-γ-glutamyl amino acids except for l-γ-glutamylglycine. Placement of substituents on carbons further removed from the side-chain amide nitrogen in l-γ-glutamylamines restored activity for gGACT, and l-γ-glutamylneohexylamine 19 had a higher specificity constant (k cat /K m) than 1. gGACT did not exhibit any stereospecificity in the amide region of l-γ-glutamylamine substrates. In addition, analogues (2630) with heteroatom substitutions for the γ methylene position of the l-γ-glutamyl moiety were examined. Several thiocarbamoyl derivatives of l-cysteine (2830) were excellent substrates for gGACT.  相似文献   

11.
A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an l-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with d-glucitol oxidation to d-fructose but also converted l-glucitol to d-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for l-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a d-sorbitol dehydrogenase (EC 1.1.1.14).  相似文献   

12.
l-Leucine 5-hydroxylase (LdoA) previously found in Nostoc punctiforme PCC 73102 is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase. LdoA catalyzed regio- and stereoselective hydroxylation of l-leucine and l-norleucine into (2S,4S)-5-hydroxyleucine and (2S)-5-hydroxynorleucine, respectively. Moreover, LdoA catalyzed sulfoxidation of l-methionine and l-ethionine in the same manner as previously described l-isoleucine 4-hydroxylase. Therefore LdoA should be a promising biocatalyst for effective production of industrially useful amino acids.  相似文献   

13.
Basically the peptidoglycan of Myxobater AL-1 consists of alternating β-1,4-linked N-acetylglucosamic-N-acetylmuramic acid chains. After splitting the aminosugar backbone with a specific algal enzyme three subunits arise: a monomer, a dimer and a trimer. Investigation of the monomer with specific enzymes and comparison of the degradation products to standards derived from other bacterial peptidoglycans suggest the following structure of the monomer peptide: l-alanyl-d-glutamic-l-meso-diaminopimelic-d-alanine. A d-alanyl-d-meso-diaminopimelic acid bond is the bridgebond between the peptides of the subunits.  相似文献   

14.
We investigated d-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E.?coli displayed oxidase activity to neutral and basic d-amino acids, but not to an l-amino acid or acidic d-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without d-amino acid, and was approximately doubled by adding d-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. l-Alanine also induced the activity, but only by about half of that induced by d-alanine. The induction by d-alanine reached a maximum level at 2?h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was d-alanine, followed by d-proline and then d-serine. Not effective were N-carbamoyl-d,l-alanine (a better inducer of DAO than d-alanine in the yeast Trigonopsis variabilis), and both basic and acidic d-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.  相似文献   

15.
ω-Transaminase (ω-TA) is one of the important biocatalytic toolkits owing to its unique enzyme property which enables the transfer of an amino group between primary amines and carbonyl compounds. In addition to preparation of chiral amines, ω-TA reactions have been exploited for the asymmetric synthesis of l-amino acids using (S)-selective ω-TAs. However, despite the availability of (R)-selective ω-TAs, catalytic utility of the ω-TAs has not been explored for the production of d-amino acids. Here, we investigated the substrate specificity of (R)-selective ω-TAs from Aspergillus terreus and Aspergillus fumigatus and demonstrated the asymmetric synthesis of d-amino acids from α-keto acids. Substrate specificity toward d-amino acids and α-keto acids revealed that the two (R)-selective ω-TAs possess strict steric constraints in the small binding pocket that precludes the entry of a substituent larger than an ethyl group, which is reminiscent of (S)-selective ω-TAs. Molecular models of the active site bound to an external aldimine were constructed and used to explain the observed substrate specificity and stereoselectivity. α-Methylbenzylamine (α-MBA) showed the highest amino donor reactivity among five primary amines (benzylamine, α-MBA, α-ethylbenzylamine, 1-aminoindan, and isopropylamine), leading us to employ α-MBA as an amino donor for the amination of 5 reactive α-keto acids (pyruvate, 2-oxobutyrate, fluoropyruvate, hydroxypyruvate, and 2-oxopentanoate) among 17 ones tested. Unlike the previously characterized (S)-selective ω-TAs, the enzyme activity of the (R)-selective ω-TAs was not inhibited by acetophenone (i.e., a deamination product of α-MBA). Using racemic α-MBA as an amino donor, five d-amino acids (d-alanine, d-homoalanine, d-fluoroalanine, d-serine, and d-norvaline) were synthesized with excellent product enantiopurity (enantiomeric excess >99.7 %).  相似文献   

16.
d-Amino acids are stereoisomers of l-amino acids. They are often called unnatural amino acids, but several d-amino acids have been found in mammalian brains. Among them, d-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. d-Amino-acid oxidase (DAO), which degrades neutral and basic d-amino acids, is mainly present in the hindbrain. DAO catabolizes d-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of d-serine and other d-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of d-serine. d-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that d-amino acids and DAO have pivotal functions in the central nervous system.  相似文献   

17.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

18.
Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of l-threonine. The production of l-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, l-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of l-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (l-isoleucine)-limited feeding promoted l-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of l-threonine production. During the growth phase, the levels of l-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin’s maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of l-isoleucine and phosphate at the end of the growth phase favored the synthesis of l-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final l-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids.  相似文献   

19.
About 30 different bacterial species were tested for the possible presence of freed-amino acids in their cell pool. Gram-positive bacteria particularly the species of the genusBacillus have a fairly large pool of freely extractabled-amino acids. Varied quantities of freed-amino acids were detected inBacillus subtilis B3,Bacillus subtilis Marburg,Bacillus licheniformis, Bacillus brevis, Bacillus stearothermophilus, Lactobacillus fermenti, Lactobacillus delbrueckii, Staphylococcus aureus andClostridium acetobutylicum. The individual components ofd-amino acids were identified in 5Bacillus species referred to above,d-alanine is the major component; the otherd-amino acids identified are aspartic acid, glutamic acid, histidine, leucines, proline, serine and tyrosine. Thed-amino acid pool size inBacillus subtilis B3 varies with different culture conditions. The pool size is maximum when growth temperature is 30°C and it fluctuates with change in pH of the medium. The maximum quantity ofd-amino acids could be recovered when the culture was at mid log phase. O2 supply to the medium has little effect ond-amino acid pool size. The starvation of cells leads to depletion of thed-amino acid pool which is exhausted almost completely within 4 hours by incubation in nutrient-free medium.  相似文献   

20.
The present study deals with five genera of hepatics in Africa, Isotachis Mitt., Anastrophyllum (Spruce) Steph., Tritomaria Schiffn. ex Loeske, Gymnocoleopsis (Schust.) Schust. and Lophozia (Dum.) Dum. All African populations of the genus Isotachis Mitt. are considered to be one species, I. aubertii (Schwaegr.) Mitt. Four species of Anastrophyllum (Spruce) Steph. (s.l.), A. auritum (Lehm.) Steph., A. piligerum (Nees) Spruce, A. subcomplicatum (Lehm. et Lindenb.) Steph. and A. minutum (Schreb.) Schust., and two species of Tritomaria Schiffn. et Loeske, T. camerunensis S. Arnell and T. exsecta (Schrad.) Schiffn. ex Loeske occur in Africa. Gymmocoleopsis multiflora (Steph.) Schust. represents a genus and species hitherto unreported for the African flora. Finally, five Lophozia (Dum.) Dum. species, L. argentina (Steph.) Schust., L. capensis S. Arnell, L. decolorans (Limpr.) Steph., L. hedbergii S. Arnell and L. tristaniana (S. Arnell) Váňa, are reported from central and southern Africa; two of these (L. argentina (Steph.) Schust. and L. decolorans (Limpr.) Steph.) represent the first reports from Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号