首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genomic sequences of 15 horse major histocompatibility complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and nonclassical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal and two to three nonclassical sequences. Phylogenetic analysis was applied to these sequences, and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The nonclassical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine major histocompatibility complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci.  相似文献   

3.
We present a simple assay to determine the swine leukocyte antigen (SLA) haplotypes of animals within two experimental populations of MHC defined miniature pigs. The Yucatan miniature pigs have four founder haplotypes ( w, x, y, z) and one recombinant haplotype ( q). The NIH miniature pigs have three founder haplotypes ( a, c, d) and two recombinant haplotypes ( f, g). Because most crossovers occur between the class I and class II regions, haplotypes can be assigned by typing one class I locus and one class II locus for practical purposes. We have previously characterized these seven founder haplotypes by sequencing the cDNA of three SLA class I loci, designated as SLA-1, SLA-3 and SLA-2 and four SLA class II loci, SLA-DQA1, SLA-DQB1, SLA-DRA1 and SLA-DRB1. These sequences were used to design allele-specific primers to amplify one MHC class I and one MHC class II gene for each haplotype. Primers were tested for specificity in homozygous and heterozygous animals. Positive control primers were also designed to amplify a portion of the E-selectin or alpha-actin gene and multiplexed with the allele-specific primers to check for false negatives. This combination of allele-specific and positive control primers produced specific and robust PCR-site-specific primer assays for assigning SLA haplotypes in the two populations.  相似文献   

4.
Simian immunodeficiency virus (SIV) infection of the rhesus macaque is currently the best animal model for AIDS vaccine development. One limitation of this model, however, has been the small number of cytotoxic T-lymphocyte (CTL) epitopes and restricting major histocompatibility complex (MHC) class I molecules available for investigating virus-specific CTL responses. To identify new MHC class I-restricted CTL epitopes, we infected five members of a family of MHC-defined rhesus macaques intravenously with SIV. Five new CTL epitopes bound by four different MHC class I molecules were defined. These included two Env epitopes bound by Mamu-A*11 and -B*03 and three Nef epitopes bound by Mamu-B*03, -B*04, and -B*17. All four restricting MHC class I molecules were encoded on only two haplotypes (b or c). Interestingly, resistance to disease progression within this family appeared to be associated with the inheritance of one or both of these MHC class I haplotypes. Two individuals that inherited haplotypes b and c separately survived for 299 and 511 days, respectively, while another individual that inherited both haplotypes survived for 889 days. In contrast, two MHC class I-identical individuals that did not inherit either haplotype rapidly progressed to disease (survived <80 days). Since all five offspring were identical at their Mamu-DRB loci, MHC class II differences are unlikely to account for their patterns of disease progression. These results double the number of SIV CTL epitopes defined in rhesus macaques and provide evidence that allelic differences at the MHC class I loci may influence rates of disease progression among AIDS virus-infected individuals.  相似文献   

5.
To explore genetic mechanisms responsible for major histocompatibility complex (MHC) class I evolution in the artiodactyls, we cloned and sequenced MHC class I cDNAs from a Bos taurus bull heterozygous for cattle MHC (BoLA) class I serological specificities w2 and w30. Four unique cDNAs were found, indicating the presence of at least two MHC class I loci. Analysis of these four cDNAs and all previously published BoLA cDNA sequences suggested that there may be three cattle MHC class I loci. Additionally, comparison of all of the BoLA class I cDNAs to MHC class I cDNAs of other artiodactyls showed that some of the BoLA class I cDNAs were more similar to certain sheep cDNAs than they were to other cattle cDNAs. These data indicate that each BoLA class I locus has evolved independently after an ancestral gene duplication event and that inter-locus segmental exchange o or concerted evolution has not occurred rapidly enough to cause extensive divergence between the orthologous MHC class I loci of sheep and cattle.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L02832–L02835. Correspondence to: T. L. Garber at the present address.  相似文献   

6.
7.
Previous studies of cattle MHC have suggested the presence of at least four classical class I loci. Analysis of haplotypes showed that any combination of one, two or three genes may be expressed, although no gene is expressed consistently. The aim of this study was to examine the evolutionary relationships among these genes and to study their phylogenetic history in Cetartiodactyl species, including cattle and their close relatives. A secondary aim was to determine whether recombination had occurred between any of the genes. MHC class I data sets were generated from published sequences or by polymerase chain reaction from cDNA. Phylogenetic analysis revealed that MHC class I sequences from Cetartiodactyl species closely related to cattle were distributed among the main cattle gene "groups", while those from more distantly related species were either scattered (sheep, deer) or clustered in a species-specific manner (sitatunga, giraffe). A comparison between gene and species trees showed a poor match, indicating that divergence of the MHC sequences had occurred independently from that of the hosts from which they were obtained. We also found two clear instances of interlocus recombination among the cattle MHC sequences. Finally, positive natural selection was documented at positions throughout the alpha 1 and 2 domains, primarily on those amino acids directly involved in peptide binding, although two positions in the alpha 3 domain, a region generally conserved in other species, were also shown to be undergoing adaptive evolution.  相似文献   

8.
Studies of major histocompatibility complex (MHC) diversity in non-model vertebrates typically focus on structure and sequence variation in the antigen-presenting loci: the highly variable and polymorphic class I and class IIB genes. Although these studies provide estimates of the number of genes and alleles/locus, they often overlook variation in functionally related and co-inherited genes important in the immune response. This study utilizes the sequence of the MHC B-locus derived from a commercial turkey to investigate MHC variation in wild birds. Sequences were obtained for nine interspersed MHC amplicons (non-class I/II) from each of 40 birds representing 3 subspecies of wild turkey (Meleagris gallopavo). Analysis of aligned sequences identified 238 single-nucleotide variants approximately one-third of which had minor allele frequencies >0.2 in the sampled birds. PHASE analysis identified 70 prospective MHC haplotypes in the wild turkeys, whereas a combined analysis with commercial birds identified almost 100 haplotypes in the species. Denaturing gradient gel electrophoresis (DGGE) of the class IIB loci was used to test the efficacy of single-nucleotide polymorphism (SNP) haplotyping to capture locus-wide variation. Diversity in SNP haplotypes and haplotype sharing among individuals was directly reflected in the DGGE patterns. Utilization of a reference haplotype to sequence interspersed regions of the MHC has significant advantages over other methods of surveying diversity while identifying high-frequency SNPs for genotyping. SNP haplotyping provides a means to identify both divergent haplotypes and homozygous individuals for assessment of immunological variation in wild and domestic populations.  相似文献   

9.
The major histocompatibility complex (MHC) in sheep, Ovar-Mhc, is poorly characterised, when compared to other domestic animals. However, its basic structure is similar to that of other mammals, comprising class I, II and III regions. Currently, there is evidence for the existence of four class I loci. The class II region is better characterised, with evidence of one DRA, four DRB (one coding and three non-coding), one DQA1, two DQA2, and one each of the DQB1, DQB2, DNA, DOB, DYA, DYB, DMA, and DMB genes in the region. The class III region is the least characterised, with the known presence of complement cascade (C4, C2 and Bf), TNFalpha and CYP21 genes. Products of the class I and II genes, MHC molecules, play a pivotal role in antigen presentation required for eliciting immune responses against invading pathogens. Several studies have focused on polymorphisms of Ovar-Mhc genes and their association with disease resistance. However, more research emphasis is needed on characterising the remaining Ovar-Mhc genes and developing simplified and cost-effective methods to score gene polymorphisms. Haplotype screening, employing multiple markers rather than single genes, would be more meaningful in MHC-disease association studies, as it is well known that most of the MHC loci are tightly linked, exhibiting very little recombination. This review summarises the current knowledge of the structure of Ovar-Mhc and polymorphisms of genes located in the complex.  相似文献   

10.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

11.
12.
The major histocompatibility complex (MHC) region was examined as a set of candidate genes for association between DNA markers and antibody response. Intercross F2 families of chickens were generated from a cross between high (HC) and low (LC) Escherichia coli i antibody lines. Restriction fragment length polymorphism (RFLP) analysis was conducted by using three MHC-related cDNA probes: chicken MHC class IV ( B-G ), chicken MHC class I ( B-F ), and human MHC-linked Tap2 . Association between RFLP bands and three antibody response traits ( E. coli , sheep red blood cells and Newcastle disease virus) were determined by two methods: by statistically analyzing each band separately and also by analyzing all bands obtained from the three probes by using multiple regression analysis to account for the multiple comparisons. The MHC class IV probe was the highest in polymorphisms but had the lowest number of bands associated with antibody response. The MHC class I probe yielded 15 polymorphic bands of which four exhibited association with antibody response traits. The Tap2 probe yielded 20 different RFLP bands of which five were associated with antibody production. Some Tap2 bands were associated with multiple antibody response traits. The multiband analysis of the three probes' bands revealed more significant effects than the analysis of each band separately. This study illustrates the efficacy of using multiple MHC region probes as candidate markers for quantitative trait loci (QTLs) controlling antibody response in chickens.  相似文献   

13.
The associations of polymorphic Alu insertions (POALINs) with major histocompatibility complex (MHC) class I genes enable us to better identify origins and evolution of MHC class I region haplotypes in different populations. For further studying origins and evolution of MHC class I region haplotypes in Han and Jinuo populations in Yunnan Province, we investigated frequencies of five POALINs, their associations with HLA-A and -B, the three-loci POALINs haplotype frequencies and HLA/POALIN four-loci haplotype frequencies within the alpha block of MHC class I region. We found that a strong positive association between AluHG and HLA-A*02 is in Jinuo, but not in Yunnan Han. These results suggest that MHC class I region haplotypes of the two studied populations might derive from different progenitor haplotypes and MHC I-POALINs are informative genetic markers for investigating origins and evolution of MHC class I region haplotypes in different populations.  相似文献   

14.
Wan QH  Zhang P  Ni XW  Wu HL  Chen YY  Kuang YY  Ge YF  Fang SG 《PloS one》2011,6(1):e14518
The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ~ DRB1 ~ DRB3 ~ DQA1 ~ DQB2 (H1) and DRA1*02 ~ DRB2 ~ DRB4 ~ DQA2 ~ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.  相似文献   

15.
Genomic characterization of MHC class I genes of the horse   总被引:1,自引:1,他引:0  
  相似文献   

16.
Diversity and locus specificity of chicken MHC B class I sequences   总被引:6,自引:0,他引:6  
The major histocompatibility complex B (MHC B) region in a standard haplotype of Leghorn chickens contains two closely linked class I loci, B-FI and B-FIV. Few sequences of B-FI alleles are available, and therefore alleles of the two loci have not been compared with regard to sequence diversity or locus specificity. Here, we report eight new B-F alpha 1/alpha 2-coding sequences from broiler chicken MHC B haplotypes, and a unique recombinant between the two B-F loci. The new sequences were combined with existing B-F sequences from Leghorn and broiler haplotypes for analysis. On the basis of phylogenetic analysis and conserved sequence motifs, B-F sequences separated into two groups (Groups A and B), corresponding to B-FIV and B-FI locus, respectively. Every broiler haplotype had one B-F sequence in Group A and the second B-F sequence, if it existed, clustered in Group B. Group B (presumptive B-FI locus) sequences identified in broiler haplotypes resembled the human MHC class I HLA-C locus in their distinctive pattern of allelic polymorphism. Compared with B-FIV, B-FI alleles were less polymorphic and possessed a conserved locus-specific motif in the alpha1 helix, but nevertheless demonstrated evidence of diversifying selection. One B-FI alpha 1/alpha 2-coding nucleotide sequence was completely conserved in four different broiler haplotypes, but each allele differed in the exon encoding the alpha 3 domain.  相似文献   

17.
18.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

19.
Animals were identified from two sire lines as being homozygous for the class I bovine lymphocyte antigen (BoLA-A) w23. These animals were also shown to be homozygous for class II antigens (BoLA-D) which, however, differed between the two sire lines. Lymphocytes from these animals were then used either as stimulator cells in one-way mixed lymphocyte reactions (MLR) with all animals in the herd carrying the w23 antigen or as antigen presenting cells to bovine T4+ cell blasts. It was shown that, within each sire line, the genes encoding the MHC class I and class II antigens were closely linked. There were no detected recombinations between the MHC class I and class II regions nor within the BoLA-D region responsible for mixed lymphocyte reactivity. MLR typing of MHC class II antigens correlated with the results from T-lymphocyte proliferation studies. Cells from these cattle, which are homozygous at the class I and II MHC loci but differ in the class II antigen expressed, could be used to type the BoLA-D of other cattle.  相似文献   

20.
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号