首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic mechanism of phosphofructokinase has been determined at pH 8 for native enzyme and pH 6.8 for an enzyme desensitized to allosteric modulation by diethylpyrocarbonate modification. In both cases, the mechanism is predominantly steady state ordered with MgATP binding first in the direction of fructose 6-phosphate (F6P) phosphorylation and rapid equilibrium random in the direction of MgADP phosphorylation. This is a unique kinetic mechanism for a phosphofructokinase. Product inhibition by MgADP is competitive versus MgATP and noncompetitive versus F6P while fructose 1,6-bisphosphate (FBP) is competitive versus fructose 6-phosphate and uncompetitive versus MgATP. The uncompetitive pattern obtained versus F6P is indicative of a dead-end E.MgATP.FBP complex. Fructose 6-phosphate is noncompetitive versus either FBP or MgADP. Dead-end inhibition by arabinose 5-phosphate or 2,5-anhydro-D-mannitol 6-phosphate is uncompetitive versus MgATP corroborating the ordered addition of MgATP prior to F6P. In the direction of MgADP phosphorylation, inhibition by anhydromannitol 1,6-bisphosphate is noncompetitive versus MgADP, while Mg-adenosine 5'(beta, gamma-methylene)triphosphate is noncompetitive versus FBP. Anhydromannitol 6-phosphate is a slow substrate, while anhydroglucitol 6-phosphate is not. This suggests that the enzyme exhibits beta-anomeric specificity.  相似文献   

2.
The affinity analogue, 2',3'-dialdehyde ATP has been used to chemically modify the ATP-inhibitory site of Ascaris suum phosphofructokinase, thereby locking the enzyme into a less active T-state. This enzyme form has a maximum velocity that is 10% that of the native enzyme in the direction of fructose 6-phosphate (F6P) phosphorylation. The enzyme displays sigmoid saturation for the substrate fructose 6-phosphate (S0.5 (F6P) = 19 mM and nH = 2.2) at pH 6.8 and a hyperbolic saturation curve for MgATP with a Km identical to that for the native enzyme. The allosteric effectors, fructose 2,6-bisphosphate and AMP, do not affect the S0.5 for F6P but produce a slight (1.5- and 2-fold, respectively) V-type activation with Ka values (effector concentration required for half-maximal activation) of 0.40 and 0.24 mM, respectively. Their activating effects are additive and not synergistic. The kinetic mechanism for the modified enzyme is steady-state-ordered with MgATP as the first substrate and MgADP as the last product to be released from the enzyme surface. The decrease in V and V/K values for the reactants likely results from a decrease in the equilibrium constant for the isomerization of the E:MgATP binary complex, thus favoring an unisomerized form. The V and V/KF6P are pH dependent with similar pK values of about 7 on the acid side and 9.8 on the basic side. The microenvironment of the active site appears to be affected minimally as evidenced by the similarity of the pK values for the groups involved in the binding site for F6P in the modified and native enzymes.  相似文献   

3.
A steady-state kinetic analysis of plastid phosphofructokinase at pH 8.2 is consistent with the enzyme having a sequential reaction mechanism. Cytosolic phosphofructokinase probably has a similar mechanism. At pH 7.0 plastid phosphofructokinase shows cooperative binding of fructose 6-phosphate and is inhibited by higher concentrations of ATP. In contrast cytosolic phosphofructokinase shows normal kinetics at both pH 8.2 and 7.0 with respect to fructose 6-phosphate and is not inhibited by ATP. In the case of plastid phosphofructokinase the affinity for fructose 6-phosphate increases as the pH is raised from 7 to 8.2 whereas cytosolic phosphofructokinase is affected in an opposite manner. Phosphate is the principal activator of plastid phosphofructokinase since the cooperative kinetics toward fructose 6-phosphate are shifted toward Michaelis-Menten kinetics by 1 mm sodium phosphate and this concentration of phosphate relieves the inhibition by ATP. Both isoenzymes are inhibited by phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate at pH 7.2. Plastid phosphofructokinase is most strongly inhibited by phosphoenol pyruvate with the I0.5 value varying from 0.08 to 0.5 μm depending on substrate concentrations; phosphate reverses this inhibition. In contrast cytosolic phosphofructokinase is much less inhibited by phosphoenolpyruvate with an I0.5 approximately 1000-fold higher. Cytosolic phosphofructokinase is powerfully inhibited by 3-phosphoglycerate with an I0.5 value of 60 μm and this appears to be the principal regulator of this isoenzyme. The two isoenzymes of phosphofructokinase in the endosperm appear, therefore, to be regulated differently. Plastid phosphofructokinase is inhibited by phosphoenolpyruvate and ATP and is activated by phosphate; whereas the cytosolic enzyme is inhibited principally by 3-phosphoglycerate and this inhibition is only partially relieved by phosphate. Some of the differences reported previously for phosphofructokinases from different plant tissues may, therefore, be due to varying ratios of the cytosolic and plastid isoenzymes.  相似文献   

4.
Chloroplast phosphofructokinase from spinach (Spinacia oleracea L.) was purified approximately 40-fold by a combination of fractionations with ammonium sulfate and acetone followed by chromatography on DEAE-Sephadex A-50. Positive cooperative kinetics was observed for the interaction between the enzyme and the substrate fructose 6-phosphate. The optimum pH shifted from 7.7 toward 7.0 as the fructose 6-phosphate concentration was taken below 0.5 mm. The second substrate was MgATP(2-) (Michaelis constant 30 mum). Free ATP inhibited the enzyme. Chloroplast phosphofructokinase was sensitive to inhibition by low concentration of phosphoenolpyruvate and glycolate 2-phosphate (especially at higher pH); these compounds inhibited in a positively cooperative fashion. Inhibitions by glycerate 2-phosphate (and probably glycerate 3-phosphate), citrate, and inorganic phosphate were also recorded; however, inorganic phosphate effectively relieved the inhibitions by phosphoenolpyruvate and glycolate 2-phosphate. These regulatory properties are considered to complement those of ADP-glucose pyrophosphorylase and fructosebisphosphatase in the regulation of chloroplast starch metabolism.  相似文献   

5.
The kinetic behaviour of human erythrocyte phosphofructokinase has been analyzed over a relative wide range of enzyme concentration (0.01 -- 1.7 mug/ml). The kinetic cooperativity which becomes apparent when the enzymic reaction rate is plotted versus the fructose 6-phosphate concentration decreases with increasing enzyme concentration. Simultaneously, a decrease of the half-saturation concentration for fructose 6-phosphate [S]0.5 is observed. Maximum velocity passes through a maximum at increasing enzyme concentrations. Sets of curves representing specific enzymic activity of phosphofructokinase versus enzyme concentration obtained at various fixed concentrations of fructose 6-phosphate and ATP are analyzed. The shapes of these curves are interpreted in terms of an association model of human erythrocyte phosphofructokinase, in which an inactive dimer (Mr 190000) and active multimers of the dimeric form are involved. The conclusion is drawn that the sigmoidal shape of the plots of the enzymic reaction rate versus fructose 6-phosphate concentration is partially caused by a displacement of the equilibrium between different states of association of phosphofructokinase to multimers by this substrate. On the other hand, the inhibition of the enzyme by high concentrations of ATP may be partially caused by a shift of this equilibrium to the state of the inactive dimer.  相似文献   

6.
The binding of fructose 6-phosphate, ATP or its nonhydrolyzable analogue adenylyl 5'-(beta,gamma-methylenediphosphonate), ADP, and phosphoenolpyruvate to Escherichia coli phosphofructokinase has been studied by changes in the protein fluorescence and/or equilibrium dialysis. The results lead to the following conclusions: (1) tetrameric phosphofructokinase can bind four ATP but only two fructose-6-phosphate, and this binding occurs without cooperativity; (2) only two conformational states, T and R, with respectively a high and a low fluorescence, seem accessible to phosphofructokinase, which exists as a mixture of one-third R and two-third T states in the absence of ligand; (3) the substrate fructose 6-phosphate and the allosteric activator ADP bind preferentially to the low-fluorescence R state, while the other substrate, ATP [or its nonhydrolyzable analogue adenylyl 5'-(beta,gamma-methylenediphosphonate)], and the allosteric inhibitor phosphoenolpyruvate bind to the high-fluorescence T state; (4) the binding of a given ligand is cooperative, with a Hill coefficient of 2, only when this binding is accompanied by a complete shift from one state to the other; for instance, the binding of the ATP analogue adenylyl 5'-(beta,gamma-methylenediphosphonate) to the T state is cooperative only in the presence of fructose 6-phosphate which favors the R state. This behavior is qualitatively consistent with a concerted transition, but quite different from that described earlier for phosphofructokinase from steady-state activity measurements (Blangy et al., 1968). This discrepancy suggests that the allosteric properties of phosphofructokinase are due in part to ligand binding and in part to the kinetics of the enzymatic reaction.  相似文献   

7.
The interaction of phosphofructokinase with NH4+, AMP, ATP, citrate, MgATP or fructose 6-phosphate, and in part with their mixtures forming either binary or ternary complexes has been studied by means of ultraviolet difference spectroscopy and circular dichroism spectroscopy in the wavelength range 265-300 nm with the aim of characterizing the conformational corollaries of the ligand effects on phosphofructokinase. The positive as well as the negative effectors change phosphofructokinase conformation in different ways, not easily interpretable in terms of one active and one inactive enzyme conformation. The spectroscopic equivalents of phosphofructokinase conformation changes resulting from catalytic activity are similar to those produced by the reaction products. The ligand concentration-dependent changes of absorption differences in the tryptophyl, tyrosyl and phenylalanyl region parallel each other, i.e. the interactions of the ligands with phosphofructokinase are not confined to specific aromatic side chains, but involve conformation changes of the large domains of the protein. ATP affinity to the enzyme shows temperature-dependent biphasic changes so that ATP binding appears to be either an entropy-driven or enthalpy-driven process. The dissociation constants of the ligands derived from spectroscopic titration of binary complex formation are comparable to those calculated from kinetic experiments. MgATP and fructose 6-phosphate each alone change phosphofructokinase conformation by binary complex formation in keeping with a random order of reaction sequence.  相似文献   

8.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

9.
The mechanism of rabbit muscle phosphofructokinase was investigated by measurement of fluxes, isotope trapping and steady-state velocities at pH8 in triethanolamine/HCl buffer with 4 mM free Mg2+. Most observations were made at I0.2. The ratio Flux of fructose 1,6-bisphosphate----fructose 6-phosphate/Flux of fructose 1,6-bisphosphate----ATP at zero ATP concentration increased hyperbolically from unity to about 3.2 as the concentration of fructose 6-phosphate was increased. Similarly, the ratio Flux of fructose 1,6-bisphosphate----ATP/Flux of fructose 1,6-bisphosphate----fructose 6-phosphate at zero fructose 6-phosphate concentration increased from unity to about 1.4 as the concentration of ATP was increased. The addition of substrates must therefore be random, whatever the other aspects of the reaction. Further, from the plateau values of the ratios, it follows that the substrates dissociate very infrequently from the ternary complex and that at a low substrate concentration 72% of the reaction follows the pathway in which ATP adds first to the enzyme. Isotope-trapping studies with [32P]ATP confirmed that ATP can bind first to the enzyme in rate-limiting step and that dissociation of ATP from the ternary complex is slow in relation to the forward reaction. No isotope trapping of [U-14C]-fructose 6-phosphate could be demonstrated. The ratios Flux of ATP----fructose 1,6-bisphosphate/Flux of ATP----ADP measured at zero ADP concentration and the reciprocal of the ratio measured at zero fructose 1,6-bisphosphate concentration did not differ significantly from unity. Calculated values for these ratios based on the kinetics of the reverse reaction and assuming ordered dissociations of products or a ping-pong mechanism gave values very significantly greater than unity. These findings exclude an ordered dissociation or a substantial contribution from a ping-pong mechanism, and it is concluded that the reaction is sequential and that dissociation of products is random. Rate constants were calculated for the steps in the enzyme reaction. The results indicate a considerable degree of co-operativity in the binding between the two substrates. The observations on phosphofructokinase are discussed in relation to methods of measurement and interpretation of flux ratios and in relation to the mechanism of other kinase enzymes.  相似文献   

10.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

11.
This work was carried out to investigate the relative roles of phosphofructokinase and pyrophosphate-fructose-6-phosphate 1-phosphotransferase during the increased glycolysis at the climacteric in ripening bananas (Musa cavendishii Lamb ex Paxton). Fruit were ripened in the dark in a continuous stream of air in the absence of ethylene. CO2 production, the contents of glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and PPi; and the maximum catalytic activities of pyrophosphate-fructose-6-phosphate 1-phosphotransferase, 6-phosphofructokinase, pyruvate kinase and phosphoenolpyruvate carboxylase were measured over a 12-day period that included the climacteric. Cytosolic fructose-1,6- bisphosphatase could not be detected in extracts of climacteric fruit. The peak of CO2 production was preceded by a threefold rise in phosphofructokinase, and accompanied by falls in fructose 6-phosphate and glucose 6-phosphate, and a rise in fructose 1,6-bisphosphate. No change in pyrophosphate-fructose-6-phosphate 1-phosphotransferase or pyrophosphate was found. It is argued that phosphofructokinase is primarily responsible for the increased entry of fructose 6-phosphate into glycolysis at the climacteric.  相似文献   

12.
Kinetic properties of spermine synthase from bovine brain.   总被引:4,自引:0,他引:4       下载免费PDF全文
Phosphofructokinase (EC 2.7.1.11) from a citric acid-producing strain of Aspergillus niger was partially purified by the application of affinity chromatography on Blue Dextran--Sepharose and the use of fructose 6-phosphate and glycerol as stabilizers in the working buffer. The resulting preparation was still impure, but free of enzyme activities interfering with kinetic investigations. Kinetic studies showed that the enzyme exhibits high co-operativity with fructose 6-phosphate, but shows Michaelis--Menten kinetics with ATP, which inhibits at concentrations higher than those for maximal activity. Citrate and phosphoenolpyruvate inhibit the enzyme; citrate increases the substrate (fructose 6-phosphate) concentration for half-maximal velocity, [S]0.5, and the Hill coefficient, h. The inhibition by citrate is counteracted by NH4+, AMP and phosphate. Among univalent cations tested only NH4+ activates by decreasing the [S]0.5 for fructose 6-phosphate and h, but has no effect on Vmax. AMP and ADP activate at low and inhibit at high concentrations of fructose 6-phosphate, thereby decreasing the [S]0.5 for fructose 6-phosphate. Phosphate has no effect in the absence of citrate. The results indicate that phosphofructokinase from A. niger is a distinct species of this enzyme, with some properties similar to those of the yeast enzyme and in some other properties resembling the mammalian enzyme. The results of determinations of activity at substrate and effector concentrations resembling the conditions that occur in vivo support the hypothesis that the apparent insensitivity of the enzyme to citrate during the accumulation of citric acid in the fungus is due to counteraction of citrate inhibition by NH4+.  相似文献   

13.
The regulation of pea-seed phosphofructokinase by phosphoenolpyruvate   总被引:7,自引:1,他引:6  
1. Pea-seed phosphofructokinase was purified 27-fold by a combination of fractionation with ethanol and ammonium sulphate. Under the conditions of assay, the enzyme was strongly inhibited by phosphoenolpyruvate. This inhibition was reversed by increasing the concentration of fructose 6-phosphate or magnesium chloride, or by lowering the ATP concentration. 2. Citrate, ADP and AMP inhibited phosphofructokinase and increased the sensitivity to phosphoenolpyruvate inhibition. Sulphate and inorganic phosphate stimulated the enzyme activity and decreased the sensitivity to phosphoenolpyruvate. 3. In the presence of inorganic phosphate and low concentrations of ATP, inhibition by phosphoenolpyruvate ceased and phosphoenolpyruvate became stimulatory. 4. The possible significance of these results in the control of plant carbohydrate metabolism is discussed.  相似文献   

14.
The steady-state kinetics of the reaction catalysed by the bloodstream form of Trypanosoma brucei were studied at pH 6.7. In the presence of 50 mM-potassium phosphate buffer, the apparent co-operativity with respect to fructose 6-phosphate and the non-linear relationship between initial velocity and enzyme concentration, which were found when the enzyme was assayed in 50 mM-imidazole buffer [Cronin & Tipton (1985) Biochem. J. 227, 113-124], are not evident. Studies on the variations of the initial rate with changing concentrations of MgATP and fructose 6-phosphate, the product inhibition by fructose 1,6-bisphosphate and the effects of the alternative substrate ITP were consistent with an ordered reaction pathway, in which MgATP binds to the enzyme before fructose 6-phosphate, and fructose 1,6-bisphosphate is the first product to dissociate from the ternary complex.  相似文献   

15.
MgADP binding to the allosteric site enhances the affinity of Escherichia coli phosphofructokinase (PFK) for fructose 6-phosphate (Fru-6-P). X-ray crystallographic data indicate that MgADP interacts with the conserved glutamate at position 187 within the allosteric site through an octahedrally coordinated Mg(2+) ion [Shirakihara, Y., and Evans, P. R. (1988) J. Mol. Biol. 204, 973-994]. Lau and Fersht reported that substituting an alanine for this glutamate within the allosteric site of PFK (i.e., mutant E187A) causes MgADP to lose its allosteric effect upon Fru-6-P binding [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. However, these authors later reported that MgADP inhibits Fru-6-P binding in the E187A mutant. The inhibition presumably occurs by preferential binding to the inactive (T) state complex of the Monod-Wyman-Changeux two-state model [Lau, F. T.-K., and Fersht, A. R. (1989) Biochemistry 28, 6841-6847]. The present study provides an alternative explanation of the role of MgADP in the E187A mutant. Using enzyme kinetics, steady-state fluorescence emission, and anisotropy, we performed a systematic linkage analysis of the three-ligand interaction between MgADP, Fru-6-P, and MgATP. We found that MgADP at low concentrations did not enhance or inhibit substrate binding. Anisotropy shows that MgADP binding at the allosteric site occurred even when MgADP produced no allosteric effect. However, as in the wild-type enzyme, the binding of MgADP to the active site in the mutant competitively inhibited MgATP binding and noncompetitively inhibited Fru-6-P binding. These results clarified the mechanism of a three-ligand interaction and offered a nontraditional perspective on allosteric mechanism.  相似文献   

16.
1. Phosphofructokinase from rat kidney cortex has been partially purified by using a combination of isoelectric and ammonium sulphate precipitation. This preparation was free of enzymes which interfered with the measurement of either product of phosphofructokinase. 2. At concentrations greater than the optimum, ATP caused inhibition which was decreased by raising the fructose 6-phosphate concentration. This suggested that ATP reduced the affinity of phosphofructokinase for the other substrate. Citrate potentiated the ATP inhibition. 3. AMP and fructose 1,6-diphosphate relieved the inhibition by ATP or citrate by increasing the affinity of the enzyme for fructose 6-phosphate. 4. K(+) is shown to stimulate and Ca(2+) to inhibit phosphofructokinase. 5. The similarity between the complex properties of phosphofructokinase from kidney cortex and other tissues (e.g. cardiac and skeletal muscle, brain and liver) suggests that the enzyme in kidney cortex tissue is normally subject to metabolic control, similar to that in other tissues.  相似文献   

17.
The transport of fructose in Bacillus subtilis was studied in various mutant strains lacking the following activities: ATP-dependent fructokinase (fruC), the fructose 1-phosphate kinase (fruB) the phosphofructokinase (pfk), the enzyme I of the phosphoenolpyruvate phosphotransferase system (the thermosensitive mutation ptsI1), and a transport activity (fruA). Combinations of these mutations indicated that the transport of fructose in Bacillus subtilis is tightly coupled to its phosphorylation either in fructose 1-phosphate, identified in vivo and in vitro or in fructose 6-phosphate identified by indirect lines of evidence. These steps of fructose metabolism were shown to depend on the activity of the enzyme I of the phosphoenolpyruvate phosphotransferase systems. The fruA mutations affect the transport of fructose when the bacteria are submitted to catabolite repression. The mutations were localized on the chromosome of Bacillus subtilis in a cluster including the fruB gene. When grown in a medium supplemented by a mixture of potassium glutamate and succinate the fruA mutants are able to carry on the two vectorial metabolisms generating fructose 6-phosphate as well as fructose 1-phosphate. A negative search of strictly negative transport mutants in fruA strains indicated that more than two structural genes are involved in the transport of fructose.  相似文献   

18.
Yeast phosphofructokinase contains 83 +/- 2 cysteinyl residues/enzyme oligomer. On the basis of their reactivity toward 5,5-dithiobis(2-nitrobenzoic acid), the accessible cysteinyl residues of the native enzyme may be classified into three groups. For titrations performed with N-ethylmaleimide, subdivisional classes of reactivity are evidenced. In each case, the 6 to 8 most reactive cysteines are not protected by fructose 6-phosphate from chemical labeling and do not seem involved in subsequent enzyme inactivation. Differential labeling studies as well as direct protection experiments in the presence of fructose 6-phosphate, indicate that 12 -SH groups/enzyme oligomer (i.e. three -SH groups per binding site) are protected by the allosteric substrate from the chemical modification. Specific labeling by the differential method of the cysteinyl residues protected by fructose 6-phosphate and further separation of the two types of subunits constituting yeast phosphofructokinase, show that the substrate binding sites are localized exclusively on subunits of beta type. Thus, alpha subunits are not implicated directly in the catalytic mechanism of yeast phosphofructokinase reaction.  相似文献   

19.
Regulation of glucose, fructose and sucrose catabolism was studied in Rhodopseudomonas capsulata grown under phototrophic conditions. The sequence of preference for the utilization of the sugar substrates was fructose, glucose, sucrose. The presence of a preferred substrate did not completely suppress the utilization of the less preferred. Glucose-6-phosphate dehydrogenase, the key enzyme of glucose and sucrose catabolism, exhibited sigmoidal substrate saturation curves and was inhibited by phosphoenolpyruvate, whereas 1-phosphofructokinase, the key enzyme of fructose catabolism, exhibited hyperbolic substrate saturation curves and was not inhibited by phosphoenolpyruvate. Since phosphoenolpyruvate is a common intermediate of glucose, fructose and sucrose catabolism, the control of glucose-6-phosphate dehydrogenase may be responsible for the preferential utilization of fructose.  相似文献   

20.
N-terminal sequence analysis shows that the limited proteolysis of Escherichia coli phosphofructokinase results in the removal of the 40-50 C-terminal residues of each chain. When tetrameric, this proteolyzed derivative is still active albeit insensitive to allosteric effectors (Le Bras, G., and Garel, J.-R. (1982) Biochemistry 21, 6656-6660). In the absence of fructose 6-phosphate, the proteolyzed phosphofructokinase spontaneously loses its activity and dissociates into dimeric species. This inactivation/dissociation is slowed down by the binding of fructose 6-phosphate to only part of the sites; it is completely prevented by the saturation of all four fructose 6-phosphate sites. The other substrate ATP does not protect the proteolyzed phosphofructokinase against this inactivation/dissociation. This inactivation/dissociation is not due to denaturation and can be reversed in some conditions by the addition of fructose 6-phosphate. The active tetrameric structure of phosphofructokinase is stable when either the C-terminal segment is not removed or the fructose 6-phosphate sites are occupied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号