共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of protein synthesis at the level of translation termination is a relatively underexplored, but rapidly expanding field. Recent advances in elucidating the mechanism of translation termination are helping to understand noncanonical events associated with translation termination. These “recording” events include read-through of stop codons, insertion of unusual amino acids such as selenocysteine, and production of several polypeptides from one open reading frame. This review summarizes data on termination-dependent recording events and proposes that there are two types of stop codon-associated sequences optimized to perform different functions: termination of translation per se or alternative elongation events. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 731–741. The article is published in the original. 相似文献
2.
Background
It has been long thought that the stop codon in a gene is followed by another stop codon that acts as a backup if the real one is read through by a near-cognate tRNA. The existence of such 'tandem stop codons', however, remains elusive. 相似文献3.
Stop codons are used to signal the ribosome to terminate the decoding of an mRNA template. Recent studies on translation termination in the yeast Saccharomyces cerevisiae have not only enabled the identification of the key components of the termination machinery, but have also revealed several regulatory mechanisms that might enable the controlled synthesis of C-terminally extended polypeptides via stop-codon readthrough. These include both genetic and epigenetic mechanisms. Rather than being a translation 'error', stop-codon readthrough can have important effects on other cellular processes such as mRNA degradation and, in some cases, can confer a beneficial phenotype to the cell. 相似文献
4.
The accuracy of the data we reported in an RNA Letter to the Editor earlier this year on the possible relationship between stop codons and splicing is questioned by Miriami et al. (this issue). We reply here that we see no inaccuracy in our data presentation and offer a possible explanation for their interpretation. 相似文献
5.
Role of premature stop codons in bacterial evolution 总被引:1,自引:0,他引:1
When the stop codons TGA, TAA, and TAG are found in the second and third reading frames of a protein-encoding gene, they are considered premature stop codons (PSC). Deinococcus radiodurans disproportionately favored TGA more than the other two triplets as a PSC. The TGA triplet was also found more often in noncoding regions and as a stop codon, though the bias was less pronounced. We investigated this phenomenon in 72 bacterial species with widely differing chromosomal GC contents. Although TGA and TAG were compositionally similar, we found a great variation in use of TGA but a very limited range of use of TAG. The frequency of use of TGA in the gene sequences generally increased with the GC content of the chromosome, while the frequency of use of TAG, like that of TAA, was inversely proportional to the GC content of the chromosome. The patterns of use of TAA, TGA and TAG as real stop codons were less biased and less influenced by the GC content of the chromosome. Bacteria with higher chromosomal GC contents often contained fewer PSC trimers in their genes. Phylogenetically related bacteria often exhibited similar PSC ratios. In addition, metabolically versatile bacteria have significantly fewer PSC trimers in their genes. The bias toward TGA but against TAG as a PSC could not be explained either by the preferential usage of specific codons or by the GC contents of individual chromosomes. We proposed that the quantity and the quality of the PSC in the genome might be important in bacterial evolution. 相似文献
6.
Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae 总被引:1,自引:0,他引:1
Keeling KM Lanier J Du M Salas-Marco J Gao L Kaenjak-Angeletti A Bedwell DM 《RNA (New York, N.Y.)》2004,10(4):691-703
The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was =0.5%. This low threshold for the onset of the major component of NMD indicates that mRNA surveillance is an ongoing process that occurs throughout the lifetime of an mRNA. 相似文献
7.
Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons 总被引:10,自引:0,他引:10
The SsrA.SmpB quality control system adds a C-terminal degradation peptide (AANDENYALAA) to nascent chains on stalled ribosomes, thereby freeing the ribosome and ensuring proteolysis of the tagged protein. An SsrA mutant with the tag sequence AANDEHHHHHH was used to slow degradation and facilitate Ni2+-nitrilotriacetic acid affinity purification. Display of affinity-purified Escherichia coli proteins on two-dimensional gels revealed small quantities of a diverse set of SsrA-H6-tagged proteins, and mass spectroscopy identified LacI repressor, lambda cI repressor, YbeL, GalE, RbsK, and a SlyD-kan(R) fusion protein as members of this set. For lambda repressor and YbeL, the SsrA-H6 tag was added after the natural C terminus of the protein, suggesting that tagging occurred while the ribosome idled at the termination codon of these genes. Potential causes of tagging for the other proteins include interference from translation of downstream reading frames, rare codons, and gene disruption. These and previous results support a broad role for the SsrA.SmpB system in freeing stalled ribosomes and in directing degradation of the products of these frustrated protein synthesis reactions. 相似文献
8.
Sandra Blanchet David Cornu Manuela Argentini Olivier Namy 《Nucleic acids research》2014,42(15):10061-10072
Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5′ nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNAGln were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code. 相似文献
9.
Many aspects of mutational processes are nonrandom, from the preponderance of transitions relative to transversions to the higher rate of mutation at CpG dinucleotides [1]. However, it is still often assumed that single-nucleotide mutations are independent of one another, each being caused by separate mutational events. The occurrence of multiple, closely spaced substitutions appears to violate assumptions of independence and is often interpreted as evidence for the action of adaptive natural selection [2, 3], balancing selection [4], or compensatory evolution [5, 6]. Here we provide evidence of a frequent, widespread multinucleotide mutational process active throughout eukaryotes. Genomic data from mutation-accumulation experiments, parent-offspring trios, and human polymorphisms all show that simultaneous nucleotide substitutions occur within short stretches of DNA. Regardless of species, such multinucleotide mutations (MNMs) consistently comprise ~3% of the total number of nucleotide substitutions. These results imply that previous adaptive interpretations of multiple, closely spaced substitutions may have been unwarranted and that MNMs must be considered when interpreting sequence data. 相似文献
10.
Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs 总被引:13,自引:2,他引:13
下载免费PDF全文

Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon–codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon–codon affinity, the extent of base modifications within or 3′ of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3′ side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs. 相似文献
11.
12.
Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. 总被引:12,自引:4,他引:12
下载免费PDF全文

Translational control of the GCN4 gene involves two short open reading frames in the mRNA leader (uORF1 and uORF4) that differ greatly in the ability to allow reinitiation at GCN4 following their own translation. The low efficiency of reinitiation characteristic of uORF4 can be reconstituted in a hybrid element in which the last codon of uORF1 and 10 nucleotides 3' to its stop codon (the termination region) are substituted with the corresponding nucleotides from uORF4. To define the features of these 13 nucleotides that determine their effects on reinitiation, we separately randomized the sequence of the third codon and termination region of the uORF1-uORF4 hybrid and selected mutant alleles with the high-level reinitiation that is characteristic of uORF1. The results indicate that many different A+U-rich triplets present at the third codon of uORF1 can overcome the inhibitory effect of the termination region derived from uORF4 on the efficiency of reinitiation at GCN4. Efficient reinitiation is not associated with codons specifying a particular amino acid or isoacceptor tRNA. Similarly, we found that a diverse collection of A+U-rich sequences present in the termination region of uORF1 could restore efficient reinitiation at GCN4 in the presence of the third codon derived from uORF4. To explain these results, we propose that reinitiation can be impaired by stable base pairing between nucleotides flanking the uORF1 stop codon and either the tRNA which pairs with the third codon, the rRNA, or sequences located elsewhere in GCN4 mRNA. We suggest that these interactions delay the resumption of scanning following peptide chain termination at the uORF and thereby lead to ribosome dissociation from the mRNA. 相似文献
13.
J W Little 《Gene》1990,88(1):113-115
In saturation mutagenesis of a protein, pools of DNA molecules are made containing a mixture of codons at a specific position. In cases where genetic methods allow screens or selections for altered function, a background of nonsense mutations can complicate genetic analysis of the resulting mutations. Methods are proposed for elimination of those molecules containing stop codons at the target codon from the pool, and for identifying positions to which these methods may be applied. Application of these methods should ensure that all changes are missense mutations, thereby simplifying genetic analysis. 相似文献
14.
Q. Liu 《Plant biosystems》2013,147(1):100-106
Abstract A comprehensive analysis of sequence patterns around the stop codons was performed, by using more than 26,000 rice full-length cDNA sequences. Here it is shown that the bias was most outstanding at the position immediately before the stop codons (?1 codon), where the AAC codon was strongly preferred among ANC codons. Compared with other positions, the codon immediately after the stop codons (+1 codon) also displayed an apparent difference, and had a strong consensus for base A at the first, C at the second, and A at the third letters, respectively. Notably, the base biases at the positions directly downstream of the stop codons, such as the +4, +5 and +6 positions, were much stronger than other positions in the 3′-UTR region, suggesting that those base positions might act as an extended stop signal in the process of protein synthesis. Examination of the relationship between sequence pattern and gene expression level, assessed by CAI values and EST counting, revealed a tendency towards bigger base biases for highly expressed genes. It could be inferred that the translation stop signal is possibly involved in many sequence recognition elements other than the stop codons; highly expressed genes should hold strong sequence consensus around the stop codons for efficient translation termination. 相似文献
15.
16.
Coding sequences lack stop codons, but many stops appear off-frame. Off-frame stops (stops in -1 and +1 shifted reading frames, termed hidden stops) terminate frame-shifted translation, potentially decreasing energy, and resource waste on nonfunctional proteins. Benefits may include reduced waste elimination costs and avoidance of potentially cytotoxic frame-shifted products. Our "ambush" hypothesis suggests that hidden stops are sometimes selected for. Codons of many amino acids can contribute to hidden stops, depending on the synonymous position state and adjacent codons. In vertebrate mitochondria, 31.75% of all amino acid combinations can form hidden stops. Codons with more potential to form hidden stops have greater usage frequency and bias in their favor among synonymous codons. Among primates, predicted mitochondrial rRNA secondary structure stability correlates negatively with the number of hidden stops in the mitochondrial genome. The taxonomic distribution of genetic codes suggests that +1 frameshifts might be more frequent than -1 frameshifts. This is confirmed by analyses of primate mitochondrial genomes: species with unstable rRNAs have more +1 stops, but the correlation is weak for -1 stops. High hidden stop density seems to be an adaptation in species with slippage prone ribosomes (unstable rRNAs). Hidden stops may thus compensate for reduced efficiency of some parts of the biosynthetic machinery. Some experimental data confirm our hypothesis: gene expression increases with the experimentally manipulated number of stops in the promoter region of a gene, suggesting biotechnological applications. 相似文献
17.
The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (−0.38 to −0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. 相似文献
18.
Significance of premature stop codons in env of simian immunodeficiency virus. 总被引:5,自引:37,他引:5
下载免费PDF全文

T Kodama D P Wooley Y M Naidu H W Kestler rd M D Daniel Y Li R C Desrosiers 《Journal of virology》1989,63(11):4709-4714
The location of the translational termination codon for the transmembrane protein (TMP) varies in three infectious molecular clones of simian immunodeficiency virus from macaques (SIVmac). The SIVmac251 and SIVmac142 infectious clones have premature stop signals that differ in location by one codon; transfection of these DNAs into human HUT-78 cells yielded virus with a truncated TMP (28 to 30 kilodaltons [kDa]). The SIVmac239 infectious clone does not have a premature stop codon in its TMP-coding region. Transfection of HUT-78 cells with this clone initially yielded virus with a full-length TMP (41 kDa). At 20 to 30 days posttransfection, SIVmac239 virus with a 41-kDa TMP gradually disappeared coincident with the emergence of a virus with a 28-kDa TMP. Virus production dramatically increased in parallel with the emergence of a virus with a 28-kDa TMP. Sequence analysis of viral DNAs from these cultures showed that premature stop codons arising by point mutation were responsible for the change in size of the TMP with time. A similar selective pressure for truncated forms of TMP was observed when the SIVmac239 clone was transfected into human peripheral blood lymphocytes (PBL). In contrast, no such selective pressure was observed in macaque PBL. When the SIVmac239 clone was transfected into macaque PBL and the resultant virus was serially passaged in macaque PBL, the virus replicated very well and maintained a 41-kDa TMP for 80 days in culture. Macaque monkeys were infected with SIVmac239 having a 28-kDa TMP; virus subsequently recovered from T4-enriched lymphocytes of peripheral blood showed only the 41-kDa form of TMP. These results indicate that the natural form of TMP in SIVmac is the full-length 41-kDa TMP, just as in human immunodeficiency virus type 1. Viruses with truncated forms of TMP appear to result from mutation and selection during propagation in unnatural human cells. 相似文献
19.
alpha-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients 总被引:3,自引:0,他引:3
Hein LK Bawden M Muller VJ Sillence D Hopwood JJ Brooks DA 《Journal of molecular biology》2004,338(3):453-462
alpha-L-Iduronidase is a glycosyl hydrolase involved in the sequential degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. A deficiency in alpha-L-iduronidase results in the lysosomal accumulation and urinary secretion of partially degraded glycosaminoglycans and is the cause of the lysosomal storage disorder mucopolysaccharidosis type I (MPS I; Hurler and Scheie syndromes; McKusick 25280). The premature stop codons Q70X and W402X are two of the most common alpha-l-iduronidase gene (IDUA) mutations accounting for up to 70% of MPS I disease alleles in some populations. Here, we have reported a new mutation, making a total of 15 different mutations that can cause premature IDUA stop codons and have investigated the biochemistry of these mutations. Natural stop codon read-through was dependent on the fidelity of the codon when evaluated at Q70X and W402X in CHO-K1 cells, but the three possible stop codons TAA, TAG and TGA, had different effects on mRNA stability and this effect was context dependent. In CHO-K1 cells expressing the Q70X and W402X mutations, the level of gentamicin-enhanced stop codon read-through was slightly less than the increment in activity caused by a lower fidelity stop codon. In this system, gentamicin had more effect on read-through for the TAA and TGA stop codons when compared to the TAG stop codon. In an MPS I patient study, premature TGA stop codons were associated with a slightly attenuated clinical phenotype, when compared to classical Hurler syndrome (e.g. W402X/W402X and Q70X/Q70X genotypes with TAG stop codons). Natural read-through of premature stop codons is a potential explanation for variable clinical phenotype in MPS I patients. Enhanced stop codon read-through is a potential treatment strategy for a large sub-group of MPS I patients. 相似文献
20.
Non-canonical translation mechanisms in plants: efficient in vitro and in planta initiation at AUU codons of the tobacco mosaic virus enhancer sequence. 总被引:5,自引:0,他引:5
下载免费PDF全文

The 5' untranslated leader (Omega sequence) of tobacco mosaic virus (TMV) genomic RNA was utilized as a translational enhancer sequence in expression of the 17 kDa putative movement protein (pr17) of potato leaf roll luteovirus (PLRV). In vitro translation of RNAs transcribed from appropriate chimeric constructs, as well as their expression in transgenic potato plants, resulted in the expected wild-type pr17 protein, as well as in larger translational products recognized by pr17-specific antisera. Mutational analyses revealed that the extra proteins were translated by non-canonical initiation at AUU codons present in the wild-type Omega sequence. In the plant system translation initiated predominantly at the AUU codon at positions 63-65 of the Omega sequence. Additional AUU codons in a different reading frame of the Omega sequence also showed the capacity for efficient translation initiation in vitro. These results extend the previously noted activity of the TMV 5' leader sequence in ribosome binding and translation enhancement in that the TMV translation enhancer can mediate non-canonical translation initiation in vitro and in vivo. 相似文献