首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A steroid binding protein (Mr = 110,000) has previously been identified in the plasma membrane of Xenopus laevis oocytes by photoaffinity labeling with [3H]R5020. In order to further characterize this steroid receptor, the photoaffinity labeled receptor protein was solubilized with 0.1% Brij 35. The solubilized labeled receptor yielded an approximate mol. wt of 102,000 +/- 2,000 by sucrose density gradient centrifugation, suggesting that the solubilized receptor exists as a monomer. RU 486, a synthetic progestin antagonist for mammalian cytosolic receptor systems, inhibited up to 70% of [3H] R5020 photoaffinity binding to the 110,000-Dalton receptor with an IC50 of 5 microM and induced germinal vesicle breakdown (GVBD) with an EC50 of 9.0 +/- 0.6 microM. GVBD induced by RU 486 was slower than with progesterone, and RU 486 was less powerful than progesterone. Micromolar concentrations of RU 486 also potentiated GVBD induced by sub-optimal concentrations of progesterone or R5020. Furthermore, RU 486 inhibited oocyte plasma membrane adenylate cyclase with an apparent IC50 of 7.5 +/- 2.5 microM. The close correlation of the EC50 value for RU 486 induction of GVBD with the IC50 values for inhibition of [3H]R5020 photoaffinity labeling of the 110,000-Dalton receptor and inhibition of adenylate cyclase activity further supports the physiological significance of the oocyte plasma membrane steroid receptor.  相似文献   

2.
Meiotic maturation of large, 1.2-1.4 mm in diameter, stage VI oocytes of Xenopus laevis can be induced to mature in vitro by exposure to progesterone or by microinjection of maturation-promoting factor (MPF). Small, 0.95 mm in diameter, stage IV oocytes do not respond to progesterone but do undergo germinal vesicle breakdown (GVBD) in response to microinjection of MPF. The possibility that small oocytes are nonresponsive to progesterone due to a specific defect in an event known to occur with large oocytes is investigated. Both large and small oocytes possess a plasma membrane steroid receptor (Mr = 110,000) as measured by photoaffinity labeling with [3H]R5020, but the density of receptors in small oocytes is only 20% of that in large oocytes. Adenylate cyclase activity stimulated by guanyl-5'-yl-imidodiphosphate is equally inhibited by steroid (50%) in plasma membranes from both large and small oocytes with an apparent IC50 of 2 X 10(-7) M progesterone. Microinjection of the heat-stable inhibitor protein of cAMP-dependent protein kinase induces GVBD in large but not in small oocytes. These results indicate that the nonresponsiveness of small, stage IV oocytes to progesterone is due to a deficiency in an event(s) subsequent to cAMP fluctuations but prior to MPF action.  相似文献   

3.
The existence of two progesterone receptor forms present in crude cytosol of chick oviduct has been demonstrated by photoaffinity labelling using [3H]R5020. On SDS-polyacrylamide gels these two forms exhibit app. Mr-values of 79000 and 109000 corresponding to the progesterone receptor forms A and B. Peptide maps of photoaffinity-labelled steroid receptors have been established by limited proteolysis with alpha-chymotrypsin. The peptide map obtained for chick oviduct cytosol progesterone receptor crosslinked with [3H]R5020 proved to be the sum of peptides obtained from partially purified preparations of forms A and B. The peptide maps of both progesterone receptor forms were identical for peptides below the Mr-value of form A, indicating extensive homology of the two forms. A significantly different peptide pattern was observed for the rat liver glucocorticoid receptor crosslinked with [3H]triamcinolone acetonide. Prolonged proteolysis with chymotrypsin gave rise to peptides with Mr-values of 6000 and 10000 from the hormone-binding domain of progesterone and glucocorticoid receptors, respectively.  相似文献   

4.
Denuded oocytes freed of their vitelline envelope have been prepared by two methods, enzymatically with pronase and manually by microdissection. The response of denuded oocytes to progesterone, in terms of germinal vesicle breakdown (GVBD), was similar to that obtained with defolliculated oocytes (separated with collagenase from follicle cells, but still keeping their vitelline membrane). The same conclusion was drawn with respect to morphological features of the oocyte surface observed by transmission and scanning electron microscopy, before and after progesterone-induced GVBD. The synergistic effect of insulin and progesterone in denuded oocytes was comparable to that observed in defolliculated oocytes. Multiplication stimulating activity (MSA) had the same effect as insulin. These observations indicate that hormones act directly upon oocytes, without interference of the surrounding vitelline envelope and follicle cells.  相似文献   

5.
Steroid antagonists, at receptor level, are valuable tools for elucidating the mechanism of steroid hormone action. We have examined and compared the interaction of avian and mammalian progesterone receptors with progestins; progesterone and R5020, and a newly synthesized antiprogesterone ZK98299. In the chicken oviduct cytosol, [3H]R5020 binding to macromolecule(s) could be eliminated with prior incubation of cytosol with excess radioinert steroids progesterone or R5020 but not ZK98299. Alternatively, [3H]ZK98299 binding in the chicken oviduct was not abolished in the presence of excess progesterone, R5020, or ZK98299. In the calf uterine cytosol, [3H]R5020 or [3H]ZK98299 binding was competeable with progesterone, R5020 and ZK98299 but not estradiol, DHT or cortisol. Furthermore, immunoprecipitation and protein A-Sepharose adsorption analysis revealed that in the calf uterine cytosol, the [3H]R5020-receptor complexes were recognized by anti-progesterone receptor monoclonal antibody PR6. This antibody, however, did not recognize [3H]ZK98299-receptor complexes. When phosphorylation of progesterone receptor was attempted in the chicken oviduct mince, presence of progesterone resulted in an increased phosphorylation of the known components A (79 kDa) and B (110 kDa) receptor proteins. Presence of ZK98299 neither enhanced the extent of phosphorylation of A and B proteins nor did it reverse the progesterone-dependent increase in the phosphorylation. The avian progesterone receptor, therefore, has unique steroid binding site(s) that exclude(s) interaction with ZK98299. The lack of immunorecognition of calf uterine [3H]ZK98299-receptor complexes, suggests that ZK98299 is either interacting with macromolecule(s) other than the progesterone receptor or with another site on the same protein. Alternatively, the antisteroid binds to the R5020 binding site but the complex adopts a conformation that is not recognized by the PRG antibodies.  相似文献   

6.
Progesterone induces the resumption of meiotic maturation of fully grown oocytes of Rana pipiens both in vivo and in vitro. The nature of the interaction of progesterone with the oocyte was investigated using a technique which allowed the application of steroid to a portion of the oocyte surface. Uptake of [3H]progesterone from the incubation media with time and with varying concentrations of steroid was approximately proportional to the surface area exposed. After 1.5 or 24 hr of continuous exposure of a portion of the oocyte surface to [3H]progesterone, greater than 90% of the radioactivity was associated with the hemisphere exposed. Restriction of the portion of oocyte surface exposed reduced the biological potency of progesterone in the induction of maturation as assessed by germinal vesicle breakdown. Decrease in hormone effectiveness was not due to direct physical effects of the technique. Removal of the surface restriction resulted in an increase in biological activity of the steroid; this change in steroid potency was correlated with an increase in steroid distribution over the cell. Oocytes continuously exposed over a restricted part of their surface to high levels of progesterone (10 μg/ml) matured to a limited extent. After 24 hr of incubation, 55% of the oocytes exposed to 10 μg/ml of progesterone over the animal pole matured as compared to 0% of those oocytes exposed over the vegetal pole. Using [3H]progesterone, no difference was detected in the amount of steroid taken up or retained by the two polar regions. These investigations suggest that the amount of progesterone required to induce maturation is related to its distribution over the oocyte and that the animal and vegetal hemispheres differ in their ability to respond to progesterone.  相似文献   

7.
Maturation of vitelline coat-free (VCF) oocytes of the starfish, Asterina pectinifera , was studied. When the oocytes, the vitelline coats of which were elevated by adding the ionophorc A-23187, were forced through two sheets of copper mesh, the vitelline coats were completely removed from the oocytes. Although some of the VCF oocytes underwent germinal vesicle breakdown following this mechanical treatment, most of them retained the normal germinal vesicles. These VCF immature oocytes underwent breakdown of germinal vesicles after addition of 1-methyladenine (1-MA). Dose-response curves of VCF oocytes to 1-MA were similar to those of normal oocytes. These results indicate that 1-MA reacts with the plasma membrane and that the presence of the vitelline coat is not prerequisite for inducing oocyte maturation.  相似文献   

8.
Fully grown meiotically immature (germinal vesicle stage) amphibian oocytes incorporate radioactive protein ([3H]vitellogenin) following in vitro culture. In vitro exposure of such oocytes to exogenous progesterone induces germinal vesicle breakdown and inhibits incorporation of vitellogenin. In the present studies, we have investigated the effects of cytoplasm taken from mature and immature oocytes on incorporation of vitellogenin and nuclear breakdown following microinjection of this material into immature oocytes. Vitellogenin incorporation was markedly suppressed in oocytes which underwent nuclear breakdown following injection with cytoplasm from mature oocytes. Incorporation of vitellogenin into oocytes which did not mature after injection with cytoplasm taken from mature oocytes resembled that seen in oocytes injected with immature cytoplasm. The degree of suppression of vitellogenin incorporation following cytoplasmic injections was similar to that seen in uninjected oocytes treated with progesterone. Oocytes injected with cytoplasm obtained from immature oocytes did not undergo either nuclear breakdown or changes in vitellogenin incorporation. The results suggest that cytoplasm obtained from mature oocytes contains a factor(s) which alters directly or indirectly the capacity of the oocyte cell membrane to incorporate vitellogenin. Enucleated immature oocytes also incorporated [3H]vitellogenin, and injection of such oocytes with mature, but not immature, oocyte cytoplasm suppressed vitellogenin incorporation. Suppressive effects of injected cytoplasm thus appear to be mediated through physiological changes in the recipient oocyte cytoplasm rather than the nuclear component.  相似文献   

9.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The cholesterol-depleting drug methyl-beta-cyclodextrin (Me-beta-CD) was tested for its effects on amphibian oocyte maturation, cholesterol depletion, and low-density membrane recovery. Progesterone-induced oocyte maturation was accelerated by pretreatment of cells with 5-50 mM Me-beta-CD in a dose-dependent manner. Treatment of oocytes with 50 mM Me-beta-CD alone was sufficient to induce germinal vesicle breakdown, stimulate formation of meiotic spindles, and stimulate phosphorylation of mitogen-activated protein kinase over time courses longer than those observed after progesterone treatment. After short-term (30 min) labeling of oocytes with [(3)H]cholesterol, 30-90 min of treatment with 5-50 mM Me-beta-CD removed 50%-70% of cell- associated label, and cholesterol depletion was not observed with alpha-cyclodextrin. After long-term (20-23 h) labeling of oocytes with [(3)H]cholesterol, Me-beta-CD treatment resulted in dose- dependent cholesterol depletion in the 5-50 mM range, and 50 mM Me-beta-CD removed approximately 50% of cell-associated label after 9 h. Treatment of oocytes with 5-50 mM Me-beta-CD also decreased recovery of low-density membrane by detergent-free sucrose gradient centrifugation. These results implicate cholesterol and low-density membrane domains in the signaling mechanisms leading to germinal vesicle breakdown in amphibian oocytes.  相似文献   

11.
A method was developed for quantitative recovery of the labile rat uterine progesterone receptor hormone-binding components. Initial conditions were established by the sucrose gradient procedure. Upon centrifugation through low-salt 5–20% sucrose gradients prepared in 10% glycerol, the well-known 6–8 S progesterone receptor components were observed either when cytosol was prelabeled with [3H]17,21-dimethyl-19-nor-4,9-pregnadiene-3, 20-dione ([3H]R5020) or when prelabeled with [3H]progesterone followed by postlabeling the fractions collected after centrifugation with either [3H]progesterone or [3H]R5020. Recovery of progesterone receptor binding was improved by prelabeling with [3H]R5020, by adding 1.5 mm ethylene glycol bis(β-aminoethylether)N,N′-tetraacetic acid (EGTA) to all buffers, and at high tissue concentrations. Under these conditions quantitative conversion of the receptor to specific [3H]R5020-binding 4S components was achieved with 150 or 400 mm KCl. Similar conditions proved unsuitable for receptor analysis by gel filtration (Bio-Rad agarose A0.5M or A1.5M), apparently due to [3H]R5020 dissociation from the receptor in the large volume of elution buffer. However, excellent receptor recovery (97.2 ± 6.7%) was achieved by including 10 nm unlabeled progesterone in all preparation and elution buffers. Receptors were then detected by the addition of 5 nm [3H]R5020 to the column fractions, exchange incubation for 3–6 h at 4 °C, and subsequent separation of bound and free steroid by the hydroxyapatite assay. This method resulted in a consistent elution pattern suggestive of receptor heterogeneity. Identity of the peak(s) as progesterone receptor components(s) was confirmed by the lack of competition by 2 μm cortisol when added either to cytosol or during the post-labeling-exchange process. Neither the qualitative nor quantitative results of the column profiles were changed substantially in the presence of 20 mm molybdate. Although the receptor structure has yet to be established, both statistical analysis of the column profiles by computer curve-fitting procedures and rechromatography of peak fractions suggested that the rat uterine progesterone receptor may be composed of multiple components. This ligand-stabilization/postlabeling-exchange procedure provides a method for further studies of progesterone receptor biochemistry in mammalian systems. Additionally, similar procedures may stabilize other labile ligand-binding proteins for biochemical analyses and/or purification.  相似文献   

12.
G A Morrill  A B Kostellow 《Steroids》1999,64(1-2):157-167
Meiosis in the amphibian oocyte is normally initiated by gonadotropins, which stimulate follicle cells to secret progesterone. The progesterone-induced G2/M transition in the amphibian oocyte was the first well-defined example of a steroid effect at the plasma membrane, since it could be shown that exogenous, but not injected, progesterone induced meiosis and that many of the progesterone-induced changes associated with meiosis occurred in enucleated oocytes. We find that [3H]progesterone binding to isolated plasma membranes of Rana pipiens oocytes is saturable, specific and temperature-dependent. Photoaffinity labeling with the synthetic progestin [3H]R5020 followed by gel electrophoresis demonstrated progestin binding to both 80 and 110 kDa proteins in the oocyte cytosol, whereas only the 110 kDa R5020 binding protein was present in the oocyte plasma membrane. We have shown that progesterone acts at Rana oocyte plasma membrane receptors within seconds to release a cascade of lipid messengers. Membrane-receptor binding causes the successive activation of: 1) N-methyltransferases, which convert phosphatidylethanolamine to phosphatidylcholine (PC); 2) an exchange reaction between PC and ceramide to form sphingomyelin (SM) and 1,2-diacylglycerol (DAG); 3) phospholipase D/phosphatidate phosphohydrolase, releasing a second DAG transient; and 4) phosphatidylinositol-specific phospholipase C, generating inositol trisphosphate and a third DAG transient. Within minutes, diglyceride kinase converts newly formed DAG species to phosphatidic acid, turning off the successive DAG signals. A transient fall (0-30 s) in intracellular ceramide is followed (within 1-2 min) by a sustained rise in intracellular ceramide lasting 3-4 h. This ceramide may be significant in later cyclin-dependent steps. We conclude that the initial action of progesterone at its plasma membrane receptor triggers a series of enzyme activations that modify the membrane and release multiple DAG species.  相似文献   

13.
Plasma membranes were purified from deciduoma of pseudopregnant rats, rat liver and intestine, and calf uterus. Steroid binding evaluated with deciduoma plasma membranes showed competitive progestin binding, in contrast with estradiol binding which was nondisplaceable as measured by competition binding assay. When the photosensitive steroid [3H]-R5020 was photocrosslinked to plasma membrane, binding was reduced competitively by either progesterone or R5020. These results indicate that the decidual cell plasma membrane contains specific sites for interactions with progestins.  相似文献   

14.
Fully grown oocytes of Xenopus laevis undergo resumption of the meiotic cycle when treated with the steroid hormone progesterone. Previous studies have shown that meiotic maturation results in profound downregulation of specific endogenous membrane proteins in oocytes. To determine whether the maturation impacts the functional properties of exogenously expressed membrane proteins, we used cut-open recordings from Xenopus oocytes expressing several types of Na(+) and K(+) channels. Treatment of oocytes with progesterone resulted in a downregulation of heterologously expressed Na(+) and K(+) channels without a change in the kinetics of the currents. The time course of progesterone-induced ion channel inhibition was concentration dependent. Complete elimination of Na(+) currents temporally coincided with development of germinal vesicle breakdown, while elimination of K(+) currents was delayed by approximately 2 h. Coexpression of human beta(1)-subunit with rat skeletal muscle alpha-subunit in Xenopus oocytes did not prevent progesterone-induced downregulation of Na(+) channels. Addition of 8-bromo-cAMP to oocytes or injection of heparin before progesterone treatment prevented the loss of expressed currents. Pharmacological studies suggest that the inhibitory effects of progesterone on expressed Na(+) and K(+) channels occur downstream of the activation of cdc2 kinase. The loss of channels is correlated with a reduction in Na(+) channel immunofluorescence, pointing to a disappearance of the ion channel-forming proteins from the surface membrane.  相似文献   

15.
Temporal relationships between maturational events and the onset of activation in response to divalent ionophore and to pricking were examined following in vitro exposure of Rana pipiens oocytes to desoxycorticosterone acetate (DOCA). Activation was evaluated on the basis of vitelline envelope elevation and cortical granule breakdown. Ionophore-induced activation was first observed after 18 hr of DOCA incubation, coincident with the time of separation of the vitelline envelope from the oocyte surface and 2–3 hr after breakdown of the germinal vesicle. Activation in response to pricking was not observed until 30 hr of DOCA incubation. Neither ionophore treatment nor pricking resulted in activation of oocytes that had not been incubated with DOCA. These results indicate that oocytes can be activated many hours earlier than previously demonstrated. The time of onset of the capacity for activation appears to be related to germinal vesicle breakdown and vitelline envelope separation.  相似文献   

16.
Electrical Properties of Toad Oocytes During Maturation and Activation   总被引:2,自引:2,他引:0  
The full-grown oocytes of the toad Bufo bufo japonicus , whether in follicular layer or not, had a membrane potential of about -50 mV in De Boer's solution (DB), but underwent a deep hyper-polarization of up to -90 mV when pretreated with Ca, Mg-free EDTA-solution. Regardless of the magnitude of their resting potentials, the defolliculated oocytes exposed to progesterone underwent a gradual depolarization before the germinal vesicle breakdown and retained membrane potential at a level of -10 mV until 18 hr post hormone treatment (PHT), the stage of the second meiotic metaphase. A positive-going activation potential of a magnitude of 70 mV was recorded in the oocytes when pricked at 18 hr PHT as well as in uterine eggs 3–5 min after insemination. A low magnitude of activation potential in response to pricking was recorded in 63% of the oocytes at 13 hr PHT, and premature oocytes exhibiting the activation potential always underwent cortical granule breakdown (CGBD) and perivitelline space formatión. Oocytes where the germinal vesicle had been removed before the hormone treatment exhibited an activation potential and underwent CGBD in response to pricking at 18 hr PHT, whereas those pulse-treated with cycloheximide (10 μg/ml) during the 8–11 hr PHT exhibited neither of these cortical responses. These results indicate that the syntheses of proteins independent of germinal vesicle taking place at 9–11 hr PHT enable the oocytes to undergo cortical responses.  相似文献   

17.
A progesterone receptor has been purified to homogeneity from rabbit uterus by steroid affinity chromatography. The receptor was obtained in 5% yield, with a specific activity for [3H]progesterone binding of 14,580 pmol/mg protein. The pure receptor migrated as a single band on SDS-polyacrylamide electrophoresis, with a MW of 70,000. Progesterone binding to the receptor was heat labile and was displaced by an excess of R5020. Photoaffinity labeling of the pure receptor with [3H]R5020 corresponded to the major photoaffinity labeled species in crude cytosol.  相似文献   

18.
The present study analyses the effect of dihydrotestosterone (DHT) and mammalian insulin on the nuclear maturation of Bufo arenarum oocytes under in vitro conditions. The response of fully grown follicle oocytes to DHT, shown by germinal vesicle breakdown (GVBD), occurred in a manner dependent on dose, time and sexual cycle period. The highest oocyte sensitivity to the hormone appeared during the breeding period, a fact evinced by high GVBD percentages after short incubation periods and at a low hormone concentrations. Insulin also proved effective in inducing nuclear maturation, although its action was only visible at high concentrations and after a long incubation period. The combination of insulin and steroid hormones (DHT or progesterone), both at subliminal doses, caused a noticeable potentiating synergism, resulting in a rapid and important increase in GVBD. Another effect of insulin was the acquisition by oocytes of steroid sensitivity during folliculogenesis.  相似文献   

19.
Unfertilized (germinal vesicle [GV] stage, superovulated and naturally ovulated) and fertilized mouse eggs were treated with the polyene antibiotic filipin, which complexes with unesterified sterols; specimens were observed by fluorescence microscopy and scanning electron microscopy (SEM). In all oocytes examined, filipin fluorescence was localized to the plasma membrane and to subcellular structures of various sizes. In the unfertilized oocyte, polarity was observed both in the plasma membrane stain and in the pattern formed by the subcellular structures. SEM of filipin-treated oocytes had several characteristic features including a specific distribution of heterogeneous microvilli that appears to have a spatial relationship with the fluorescent pattern of the filipin-positive subcellular structures. In GV stage and fertilized eggs the filipin-positive subcellular structures were associated with the germinal vesicle and in fertilized eggs they were associated with the site of polar body abstriction.  相似文献   

20.
L A Nikitina  T A Detlaf 《Ontogenez》1986,17(3):243-247
The karyoplasm (the contents of germinal vesicle) of the Bufo viridis, Xenopus laevis, and Acipenser stellatus oocytes maturing under the influence of progesterone acquires the ability to induce the maturation (germinal vesicle breakdown) of the full grown oocytes, when injected into them. This ability arises in the karyoplasm earlier than in the cytoplasm and is preserved until the germinal vesicle breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号