首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two recent studies have addressed the question of the dynamics of the phosphate in egg phosphatidylcholine multilayers by measurement and interpretation of 31P NMR spin-lattice relaxation. In the first (Milburn, M. P., and K. R. Jeffrey. 1987. Biophys. J. 52:791-799), the temperature dependences of the two contributions to the 31P relaxation rate, a dipolar interaction of the phosphorus with neighboring protons and a time-dependent anisotropic chemical shielding interaction were separately measured. A further study (Milburn, M. P., and K. R. Jeffrey. 1989. Biophys. J. 56:543-549) incorporated the anisotropic nature of phospholipid motions into the dynamic model of the headgroup motion by measuring the 31P spin-lattice relaxation time in oriented samples as a function of angle between the bilayer normal and the magnetic field. These angular dependent measurements were made at high field so that analysis could by made using the chemical shielding interaction because the 31P-1H dipolar interaction in phospholipid systems is complex and as such poorly understood. Nuclear Overhauser effect (NOE) studies have attempted to identify the important proton species contributing to the 31P-1H dipolar interaction (Yeagle, P. L., W. C. Hutton, C. Huang, and R. B. Martin. 1975. Biochemistry. 15:2121-2124) and despite some controversy in interpretation (Burns, R. A., R. E. Stark, D. A. Vidusek, and M. F. Roberts. 1983. Biochemistry. 22:5084-5090), it was generally agreed that the choline methyl and methylene protons are the major contributors to the 31P-1H NOE. To further understand the nature of the 31P-1H dipolar interaction, we carried out 31P-1H Transient Overhauser effect (TOE) measurements on egg phosphatidylcholine multilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
W G Wu  S R Dowd  V Simplaceanu  Z Y Peng  C Ho 《Biochemistry》1985,24(25):7153-7161
Dimyristoylphosphatidylcholine (DMPC) labeled with a C19F2 group in the 4-, 8-, or 12-position of the 2-acyl chain has been investigated in sonicated unilamellar vesicles (SUV) by fluorine-19 nuclear magnetic resonance (NMR) at 282.4 MHz from 26 to 42 degrees C. The 19F NMR spectra exhibit two overlapping resonances with different line widths. Spin-lattice relaxation time measurements have been performed in both the laboratory frame (T1) and the rotating frame (T1 rho) in order to investigate the packing and dynamics of phospholipids in lipid bilayers. Quantitative line-shape and relaxation analyses are possible by using the experimental chemical shift anisotropy (delta nu CSA) and the internuclear F-F vector order parameter (SFF) values obtained from the 19F powder spectra of multilamellar liposomes. The following conclusions can be made: The 19F chemical shift difference between the inside and outside leaflets of SUV can be used to monitor the lateral packing of the phospholipid in the two SUV monolayers. The hydrocarbon chains in the outer layer are found to be more tightly packed than those of the inner one, and the differences between them become smaller near the chain terminals. The effective correlation time [(1-4) x 10(-7) s] obtained from either the motional narrowing of the line widths or off-resonance T1 rho measurements is shorter than that estimated from the Stokes-Einstein diffusion model (10(-6) s), on the basis of a hydrodynamic radius of 110 A for SUV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
High-resolution, natural abundance 13C[1H] (100.5 MHz), 31P[1H] (161.8 MHz) and 1H (400.0 MHz) NMR spectroscopy was used to identify the calcium-binding sites of bovine casein and to ascertain the dynamic state of amino acid residues within the casein submicelles (in 125 mM KCl, pD = 7.4) and micelles (in 15 mM CaCl2/80 mM KCl, pD = 7.2). The presence of numerous, well-resolved peaks in the tentatively assigned 13C-NMR spectra of submicelles (90 A radius) and micelles (500 A radius) suggests considerable segmental motion of both side chain and backbone carbons. The partly resolved 31P-NMR spectra concur with this. Upon Ca2+ addition, the phosphoserine beta CH2 resonance (65.8 ppm vs DSS) shifts upfield by 0.2 ppm and is broadened almost beyond detection; a general upfield shift (up to 0.3 ppm) is also observed for the 31P-NMR peaks. The T1 values of the alpha CH envelope for submicelles and micelles are essentially identical corresponding to a correlation time of 8 ns for isotropic rotation of the caseins. Significant changes in the 31P T1 values accompany micelle formation. Data are consistent with a loose and mobile casein structure, with phosphoserines being the predominant calcium-binding sites.  相似文献   

5.
The crystal structure and a 96-ps molecular dynamics simulation used to analyze structural and motional contributions to spin-lattice (T1) relaxation times of phenylalanine and tyrosine C gamma carbons of the pancreatic trypsin inhibitor. The H beta and H delta protons geminal to C gamma are calculated to account for approximately 80% of the dipolar relaxation for each residue. Experimental T1 values for the phenylalanine residues obtained at 25 MHz are observed to be 15-25% longer than estimates based on the rigid crystal structure. It is shown how an increase in T1 can be related to order parameters for the picosecond motional averaging of the important C,H dipolar interactions, and how these order parameters can be calculated from a protein molecular dynamics trajectory.  相似文献   

6.
R Ghosh 《Biochemistry》1988,27(20):7750-7758
The structural and motional properties of mixed bilayers of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been examined by using wide-line 31P, 14N, and 2H NMR. 2H and 14N NMR data showed that in mixed bilayers containing both PC and PE the conformations of the head-group moieties are essentially identical with those observed for bilayers containing a single phospholipid species. Equimolar amounts of cholesterol induce also only a small change in head-group conformation. 31P T1 relaxation measurements (at 300 MHz) at various temperatures of bilayers containing phospholipids with a mixture of phosphocholine and phosphoethanolamine head-groups and unsaturated fatty acid residues revealed in all cases a clearly defined minimum corresponding to the condition omega O tau C-1 approximately 1. For all phospholipid mixtures studied, the 31P T1 relaxation was homogeneous over the whole powder spectrum and could be fitted to a single-exponential decay. The 31P vs temperature profiles were analyzed by a simple correlation model following the analysis of Seelig et al. (1981) [Seelig, J., Tamm, L., Hymel, L., & Fleischer, S. (1981) Biochemistry 20, 3922-3932]. Rotational diffusion of the phosphate moiety in bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was slower than that of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and the activation energy was increased by a factor of 1.7 to 31.4 kJ mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone.  相似文献   

8.
19F nuclear magnetic resonance (n.m.r.) relaxation parameters of 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 were measured and used to characterize the internal mobility of individual 5-fluorouridine (FUrd) residues in terms of several models of molecular motion. Measured relaxation parameters include the spin-lattice (T1) relaxation time at 282 MHz, the 19F(1H) NOE at 282 MHz, and the spin-spin (T2) relaxation time, estimated from linewidth data at 338 MHz, 282 MHz and 84 MHz. Dipolar and chemical shift anisotropy contributions to the 19F relaxation parameters were determined from the field-dependence of T2. The results demonstrate a large chemical shift anisotropy contribution to the 19F linewidths at 282 and 338 MHz. Analysis of chemical shift anisotropy relaxation data shows that, relative to overall tumbling of the macromolecule, negligible torsional motion occurs about the glycosidic bond of FUrd residues in 19F-labeled tRNA(Val)1, consistent with the maintenance of base-base hydrogen-bond and/or stacking interactions at all fluorouracil residues in the molecule. The dipolar relaxation data are analyzed by using the "two-state jump" and "diffusion in a cone" formalisms. Motional amplitudes (theta) are interpreted as being due to pseudorotational fluctuations within the ribose ring of the fluorinated nucleoside. These amplitudes range from approximately 30 degrees to 60 degrees, assuming a correlation time (tau i,2) of 1.6 ns. By using available 19F n.m.r. assignment data for the 14 FUrd residues in 5-fluorouracil-substituted tRNA(Val)1, these motional amplitudes can be correlated directly with the environmental domain of the residue. Residues located in tertiary and helical structural domains show markedly less motion (theta approximately equal to 30 to 35 degrees) than residues located in loops (theta approximately equal to 45 to 60 degrees). A correlation between residue mobility and solvent exposure is also demonstrated. The amplitudes of internal motion for specific residues agree quite well with those derived from X-ray diffraction and molecular dynamics data for yeast tRNA(Phe).  相似文献   

9.
T H Duffy  T Nowak 《Biochemistry》1985,24(5):1152-1160
The interactions of the substrate phosphoenolpyruvate and the substrate analogues (Z)-phosphoenol-alpha-ketobutyrate and (E)-phosphoenol-alpha-ketobutyrate with the enzyme-Mn complex of chicken liver phosphoenolpyruvate carboxykinase have been investigated by 1H and by 31P nuclear relaxation rate studies. Studies of the 1H and the 31P relaxation rates of the ligands in the binary Mn-ligand complexes show that these ligands interact with the metal ion via the phosphate group but not through the carboxylate. An inner sphere coordination complex is formed but the metal-ligand complex is not in the most extended conformation. In the relaxation rate studies of the ligands in the presence of the enzyme, conditions were adjusted so that all of the Mn2+ that was added resided in the ternary enzyme-Mn-ligand complex. The 1H relaxation rates for each of the three ligands were measured at 100 and at 300 MHz. In each case the normalized paramagnetic effects showed that 1/(pT2p) was greater than 1/(pT1p). A frequency dependence of the 1/(pT1p) and 1/(pT2p) values was also measured. The correlation time, tau c, for the Mn-1H interaction was calculated from the frequency dependence of 1/(pT1p) assuming a maximal frequency dependence of tau c and assuming no frequency dependence of tau c and from the T1M/T2M ratios at each frequency. The tau c values for all of the complexes, calculated at 100 MHz, varied from approximately 0.3 to 2.0 ns. These values were used to calculate the Mn-1H distances in each of the ternary complexes. The relaxation rates of 31P were also measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   

11.
We measured the 31P[1H] Nuclear Overhauser Effect (NOE) as a function of temperature and of 1H irradiation frequency, the linewidth Δν12 as a function of temperature and the relaxation time T1 above and below the thermal transition temperature, of the 31P-NMR signal in sonicated liposomes of 1,2-dimiristoyl-3-sn-phosphatidylcholine (DMPC), 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) and 1,2-dimiristoyl-3-sn-phosphatidylcholine (DSPC). The same measurements were repeated in the presence of high molecular weight dextrans. They strongly reduce the NOE and produce longer relaxation times T1. According to the current models, we were able to evaluate, in the different situations, the correlation time of the internal motion τG and the distance r between interacting groups in the region of the polar head groups. While the first parameter changes abruptly through the phase transition and under the effect of dextrans, the latter does not appear modified in any case. These results are discussed in terms of a conformational change of the phosphocholine head groups.  相似文献   

12.
Phosphorus-31 NMR studies of E. coli ribosomes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Phosphorus-31 nuclear magnetic resonance spectra, relaxation times and nuclear Overhauser (NOE) enhancement have been measured for E. coli ribosomes, subunits and rRNA. NOE and T1 experiments reveal that the phosphorus relaxation in this organelle is largely dipolar in origin. Moreover these results imply the presence of internal motion within the RNA chain with a correlation time of about 3-5 x 10(-9) sec. In all cases the predominant resonance is centered at about -1.5 ppm (relative to 85% H3PO4) as expected for a phosphodiester linkage where there is a large degree of double helix. The linewidth narrows by about a factor of four when the ribosomal proteins are removed indicating a substantial immobilization of the RNA when it is assembled into the ribosome. In addition to the phosphodiester resonance, ribosomes also reveal one or two narrower resonances shifted to low field by 1-4 ppm. Based on the observation that these resonances show a pH dependent chemical shift, we assign them to phosphate monoesters i.e. terminal 3' or 5' phosphate groups. These terminal phosphates are due to short oligomers of RNA derived from the terminus of the chain.  相似文献   

13.
Murphy HC  Burns SP  White JJ  Bell JD  Iles RA 《Biochemistry》2000,39(32):9763-9770
The resolution of the trimethyl headgroup resonance of phosphatidylcholine (PC) and sphingomyelin (SM) in the intact human low-density lipoprotein (LDL) (1)H NMR spectrum at 600 MHz enabled the investigation of LDL surface structure and phospholipid-apoB interactions. We have previously shown that a higher proportion of PC headgroups (25-35% of total PC in LDL) compared to SM were tightly bound to apoB and therefore NMR-invisible [Murphy, H. C., et al. (1997) Biochem. Biophys. Res. Commun. 234 (3), 733-737]. In the present study, we have investigated the mobility of phospholipid (PL) headgroups, using (1)H NMR spin-spin (T(2)) relaxation measurements, in LDL isolated from nine volunteers. We show that both PC and SM exist in two additional and distinct environments indicated by the biexponential behavior of the relaxation decays in each case. The data showed that 36% of PC headgroups had a short T(2) component, mean T(2) of 31 ms, and 64% had a longer T(2) component of 54 ms. Approximately 15% of SM headgroups had a short T(2) component (mean T(2) of 27 ms) and 85% had a longer T(2) component of 78 ms. Therefore the majority of SM headgroups (85%) were more mobile than PC (P < 0.001) and since PC headgroups in organic media were more mobile than SM, we conclude that the characteristic high mobility of LDL SM is not an intrinsic property but arises from a high degree of order in molecular packing of the surface PL of human LDL. We suggest that because PC and SM interact differentially with cholesterol and possibly with neighboring phospholipids, this results in the formation of relatively long-lived microdomains of PL in vivo.  相似文献   

14.
The polar headgroup structure of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in inverted micelles in chloroform or benzene was investigated by the selective 31P(H) nuclear Overhauser effect (NOE). In the frequency dependence of the 31P(1H) NOE, PC micelles in CDCl3 showed two maxima. The larger maximum was located at the resonance of the glycerol-CH2OP protons and the smaller at the resonance of the N-methyl protons. In PC/PE mixed micelles in C6D6, both PC and PE showed three maxima which were located at the resonance of the CH2OP protons, the N-methyl protons and the amino protons in the frequency dependence of the 31P-NOE. The N-methyl protons of PC and the amino protons of PE were closely spaced to the phosphate groups of neighboring lipid molecules. The polar headgroups of PC and PE in the mixed micelles were concluded to lie in the plane perpendicular to the molecular axes. The frequency dependence of the 31P(H) NOE for PS micelles in C6D6 showed the maxima at the resonances of the amino protons and the CH2OP protons. The polar headgroups of PS molecules were not extended parallel to the molecular axes in the inverted micelles.  相似文献   

15.
Inhibition of bovine brain hexokinase by its product, glucose 6-phosphate, is considered to be a major regulatory step in controlling the glycolytic flux in the brain. Investigations on the molecular basis of this regulation, i.e. allosteric or product inhibition, have led to various proposals. Here, we attempt to resolve this issue by ascertaining the location of the binding sites for glucose and glucose 6-phosphate on the enzyme with respect to a divalent-cation-binding site characterized previously [Jarori, G. K., Kasturi, S. R. & Kenkare, U. W. (1981) Arch. Biochem. Biophys. 211, 258-268]. The paramagnetic effect of enzyme-bound Mn(II) on the spin-lattice relaxation rates (T-1(1] of ligand nuclei (1H and 31P) in E.Mn(II).Glc and E.Mn(II).Glc6P complexes have been measured. The paramagnetic effect of Mn(II) on the proton relaxation rates of C1-H alpha, C1-H beta and C2-H beta of glucose in the E.Mn(II).Glc complex was measured at 270 MHz and 500 MHz. The temperature dependence of these rates was also studied in the range of 5-30 degrees C at 500 MHz. The ligand nuclear relaxation rates in E.Mn(II).Glc are field-dependent and the Arrhenius plot yields an activation energy (delta E) of 16.7-20.9 kJ/mol. Similar measurements have also been carried out on C1-H alpha, C1-H beta and C6-31P at 270 MHz (1H) and 202.5 MHz (31P) for the E.Mn(II).Glc6P complex. The temperature dependence of 31P relaxation rates in this complex was measured in the range 5-30 degrees C, which yielded delta E = 9.2 kJ/mol. The electron-nuclear dipolar correlation time (tau c), determined from the field-dependent measurements of proton relaxation rates in the E.Mn(II).Glc complex, is 0.22-1.27 ns. The distances determined between Mn(II) and C1-H of glucose and glucose 6-phosphate are approximately 1.1 nm and approximately 0.8 nm, respectively. These data, considered together with our recent results [Mehta, A., Jarori, G. K. & Kenkare, U. W. (1988) J. Biol. Chem. 263, 15492-15498], suggest that glucose and glucose 6-phosphate may bind to very nearly the same region of the enzyme. The structure of the binary Glc6P.Mn(II) complex has also been determined. The phosphoryl group of the sugar phosphate forms a first co-ordination complex with the cation. However, on the enzyme, the phosphoryl group is located at a distance of approximately 0.5-0.6 nm from the cation.  相似文献   

16.
By varying the pH, the influence of the ionization degree on the structure and dynamics of aqueous dispersions of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) was studied, using 2H-NMR methods. For this purpose DOPS was synthesized with deuterium labels incorporated either stereospecifically at the beta-position of the serine headgroup ([2-2H]DOPS) or at the 11-position of both acyl chains ([11,11-2H2]DOPS), allowing the effects of pH on headgroup and acyl chains to be measured in parallel. A large scale synthesis procedure of stereospecific 1,2-dioleoyl-sn-glycero-3-phospho-[2-2H]-L- serine is described. The quadrupolar splitting (delta nu q) of [2-2H]DOPS is shown to be a sensitive sensor for the degree of protonation of the molecule. Whereas the delta nu q of [2-2H]DOPS decreases upon lowering the pH, that of [11,11-2H2]DOPS gradually increases, indicating an increase in acyl chain ordering. In the pH range below the pKa value, DOPS exhibits a temperature-dependent bilayer to hexagonal HII phase transition, apparent from the 31P-NMR spectra and the occurrence of a second component in the [11,11-2H2]DOPS 2H-NMR spectrum, with a much smaller delta nu q. The HII phase component in spectra from [2-2H]DOPS coincides with the isotropic position and has no defined delta nu q. In the bilayer organization delta nu q and spin-lattice relaxation time (T1) values for the acyl chain deuterated DOPS are similar to those obtained for other lipid systems. In contrast the PS headgroup region displays a relatively rigid structure as evidenced by a large delta nu q and very small T1 values. Upon adopting the HII phase the T1 values of the acyl chain deuterons are hardly affected. The uniqueness of the PS headgroup with respect to structure and motional properties is reinforced by the occurrence of a T1 minimum at 45 degrees C in the measurement of the temperature dependence of T1 for [2-2H]DOPS in the hexagonal HII configuration. Quantitative analysis yields a correlation time (tau c) for the motions determining T1 under these conditions, of 3.45 ns.  相似文献   

17.
31P relaxation times of lecithin in ethanol solutions have been measured in dependence on temperature and water concentration. Trial calculations have been carried out on the assumption of a 2-site exchange model. The results suggest first, the relaxation behaviour is determined by various motional and exchange processes; second, at 29 MHz the dipole-dipole interaction between 31P and protons provides the dominant contribution; third, in general we are not concerned with the case of “extreme narrowing”. Moreover, there are no negligible intermolecular contributions to relaxation.  相似文献   

18.
Spin-lattice relaxation, T1z, measurements of [2,2,3,4,4,6-2H6]cholesterol in model membranes of DMPC were performed as a function of temperature, Larmor frequency and position of labelling in the fused ring system. The results are interpreted according to a hierarchy of motions, such that motion i of correlation time tau i reduces the residual ordering set, characterizing motions i-1, i-2, etc..., by the amount Si = d(2)00(beta i), where beta i is the angle between the axes of motional averaging of motions i and i-1, respectively and d(2)00 is the Wigner rotation matrix element. The appearance of minima in the temperature dependence of T1z for cholesterol, at 46.1 MHz and 30.7 MHz, and the scaling of these T1z (min) according to the orientation of each individual C-2H bond with respect to the axis of motional averaging of cholesterol, allows assignment of the sterol axial rotation to the second fastest motion, characterized by a correlation time of 3.2 X 10(-9) s at 25 degrees C and an activation energy of 32 +/- 5 kJ X mole-1. The fastest motion of cholesterol in DMPC could be a very rapid libration, 'wobbling', which does not contribute significantly to the T1z relaxation of cholesterol at physiological temperatures and Larmor frequencies smaller than 50 MHz, but does reduce the ordering of the cholesterol molecule in DMPC from S0 = 1 to S1 = 0.8, at 25 degrees C.  相似文献   

19.
The process of biological membrane fusion can be analysed by topological methods. Mathematical analysis of the fusion process of vesicles indicated two significant facts: the formation of an inner, transient structure (hexagonal phase - H(II)) and a translocation of some lipids within the membrane. This shift had a vector character and only occurred from the outer to the inner layer. Model membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) was studied. (31)P- and (1)H-NMR methods were used to describe the process of fusion. (31)P-NMR spectra of multilamellar vesicles (MLV) were taken at various temperatures and concentrations of Ca(2+) ions (natural fusiogenic agent). A (31)P-NMR spectrum with the characteristic shape of the H(II) phase was obtained for the molar Ca(2+)/PS ratio of 2.0. During the study, (1)H-NMR and (31)P-NMR spectra for small unilamellar vesicle (SUV), which were dependent on time (concentration of Pr(3+) ions was constant), were also recorded. The presence of the paramagnetic Pr(3+) ions permits observation of separate signals from the hydrophilic part of the inner and outer lipid bilayers. The obtained results suggest that in the process of fusion translocation of phospholipid molecules takes place from the outer to the inner layer of the vesicle and size of the vesicles increase. The NMR study has showed that the intermediate state of the fusion process caused by Ca(2+) ions is the H(II) phase. The experimental results obtained are in agreement with the topological model as well.  相似文献   

20.
31P NMR studies of 140 base pair DNA fragments in nucleosomes and free in solution show no detectable change in the internucleotide 31P chemical shift or linewidth when DNA is packaged into nucleosomes. Measurements of 31P spin-lattice relaxation times T1 and 31P-[H] nuclear Overhauser enhancements revealed internal motion with a correlation time of about 4 x 10(-10) sec in double helical DNA, both free in solution and bound to nucleosomal core proteins. This result implies greater dynamic mobility in double helical DNA than has previously been supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号