首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-limited continuous cultures of Cyanidium caldarium contained induced levels of glutamine synthetase and nitrate reductase when either nitrate or ammonia was the sole nitrogen source. Nitrate reductase occurred in a catalytically active form. In the presence of excess ammonia, glutamine synthetase and nitrate reductase were repressed, the latter enzyme completely. In the presence of excess nitrate, intermediate levels of glutamine synthetase activity occurred. Nitrate reductase was derepressed but occurred up to 60% in a catalytically inactive form.Cell suspensions of C. caldarium from nitrate- or ammonialimited cultures assimilated either ammonia or nitrate immediately when provided with these nutrients. In these types of cells, as well as in cells grown with excess nitrate, the rate of ammonia assimilation was 2.5-fold higher than the rate of nitrate assimilation. It is proposed that the reduced rate at which nitrate was assimilated as compared to ammonia might be due to regulatory mechanisms which operate at the level of nitrate reductase activity.  相似文献   

2.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   

3.
Addition ofl-methionine-dl-sulphoximine to cells ofCyanidium caldarium brings about a loss of glutamine synthetase activity. Concomitantly ammonia assimilation is prevented.Under physiological conditions nitrate reductase [NAD(P)H: nitrate oxidoreductase EC 1.6.6.2] is reversibly converted into an inactive enzyme upon addition of ammonia. In the presence of methionine sulphoximine, when glutamine synthetase activity is lost, nitrate reductase is no longer inactivated by ammonia. It is suggested that ammonia itself is not the actual effector of nitrate reductase inactivation.Concomitantly with the failure of nitrate reductase to undergo ammonia-inactivation, in the presence of methionine sulphoximine nitrate reduction is an uncontrolled process, thus, in media with nitrate ammonia continues to be produced and excreted into the external medium at a constant rate.Abbreviations NR Nitrate reductase - GS Glutamine synthetase - GOGAT Glutamate syntase - MSX l-methionine-dl-sulphoximine  相似文献   

4.
Synechococcus leopoliensis was cultivated in a light/dark regime of 12:12 h. After onset of the illumination (2 h), the specific activity of nitrite reductase, glutamine synthetase and isocitric dehydrogenase increased; that of glucose-6-phosphate dehydrogenase decreased and that of nitrate reductase and NAD- (NADP) glutamate dehydrogenase remained nearly unchanged.This stimulation of the enzymes in vivo was also observed in vitro. Also, when extracts from darkened cells were incubated with thioredoxin and dithioerythriol enzyme activities increased in the same amount as obtained in vivo. In addition, glucose-6-phosphate dehydrogenase and isocitric dehydrogenase were stimulated by Mn2+ and Mg2+ in the assay mixture. Glutamine synthetase activity was enhanced only by Mg2+ while Mn2+ was inhibitory.The results are discussed with respect to the regulation of nitrogen metabolism by light.Abbreviations GS glutamine synthetase - GOGAT glutamate-oxoglutarate-aminotransferase - TR thioredoxin - DTE dithioerythritol - LD change from light to dark  相似文献   

5.
Work is described which suggests that glutamine synthetase (GS) could play an important and direct regulatory role in the control of NO3 assimilation by the alga. In both steady-state cells and ones disturbed physiologically by changes in light or nitrogen supply the assimilation of NO3 appears to be limited by the activity of GS. Moreover although in normal cells NH3 can completely inhibit NO3 uptake, promote the deactivation of nitrate reductase (NR) and repress the synthesis of NR and nitrite reductase (NIR), these controls are relaxed in cells in which GS is deactivated by treatment with L-methionine-DL-sulfoximine (MSO). It is proposed that the reversible deactivation of GS may play an important part in the regulation of NO3 assimilation although it is still not clear whether the enzyme itself or products of its metabolism are responsible.Abbreviations GS glutamine synthetase - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - NR nitrate reductase - NIR nitrite reductase - GDH glutamate dehydrogenase - CHX cycloheximide - MSO L-methionine-DL-sulfoximine - FAD flavine adenine dinucleotide  相似文献   

6.
The effect of the nitrogen source on the cellular activity of ferredoxin-nitrate reductase in different cyanobacteria was examined. In the unicellular species Anacystis nidulans, nitrate reductase was repressed in the presence of ammonium but de novo enzyme synthesis took place in media containing either nitrate or not nitrogen source, indicating that nitrate was not required as an obligate inducer. Nitrate reductase in A. nidulans was freed from ammonium repression by L-methionine-D,L-sulfoximine, an irreversible inhibitor of glutamine synthetase. Ammonium-promoted repression appears therefore to be indirect; ammonium has to be metabolized through glutamine synthetase to be effective in the repression of nitrate reductase. Unlike the situation in A. nidulans, nitrate appeared to play an active role in nitrate reductase synthesis in the filamentous nitrogen-fixing strains Anabaena sp. strain 7119 and Nostoc sp. strain 6719, with ammonium acting as an antagonist with regard to nitrate.  相似文献   

7.
Summary The relationship between N2-fixation, nitrate reductase and various enzymes of ammonia assimilation was studied in the nodules and leaves ofC. arietinum. In the nodules of the plants growing on atmospheric nitrogen, maximum activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and aspartate aminotransferase (AAT) were recorded just prior to maximum activity of nitrogenase. In nitrate fed plants, the first major peak of GDH and AS coincided with that of nitrate reductase in the nodules. With the exception of AS, application of nitrate decreased the activities of all these enzymes in nodules but not in leaves. Activities of GS, GOGAT and AAT were affected to much greater extent than that of GDH. On comparing the plants grown without nitrate and those with nitrate, the ratios of the activities of GDH/GS and GDH/GOGAT in nitrate given plants, increased by 4 and 12 fold, respectively. The results presented in this paper suggest that in nodules of nitrate fed plants, assimilation of ammonia via GDH assumes much greater importance.  相似文献   

8.
The influence of 50 and 100 μM Ni on the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) was studied in the wheat roots. Root fresh weight, tissue Ni, nitrate, ammonium, glutamate and protein concentrations were also determined. Exposure to Ni resulted in a marked reduction in fresh weight of the roots accompanied by a rapid accumulation of Ni in these organs. Both nitrate and ammonium contents in the root tissue were considerably enhanced by Ni stress. While protein content was not significantly influenced by Ni application, glutamate concentration was slightly reduced on the first day after treatment with the higher Ni dose. Treatment of the wheat seedlings with 100 μM Ni led to a decrease in NR activity; however, it did not alter the activation state of this enzyme. Decline in NiR activity observed after application of 100 μM Ni was more pronounced than that in NR. The activities of GS and NADH-GOGAT also showed substantial decreases in response to Ni stress with the latter being more susceptible to this metal. Starting from the fourth day, both aminating and deaminating GDH activities in the roots of the seedlings supplemented with Ni were lower in comparison to the control. While the activity of AspAT remained unaltered after Ni application that of AlaAT showed a considerable enhancement. The results indicate that exposure of the wheat seedlings to Ni resulted in a general depression of nitrogen assimilation in the roots. Increase in the glutamate-producing activity of AlaAT may suggest its involvement in supplying the wheat roots with this amino acid under Ni stress.  相似文献   

9.
Beggiatoa alba B18LD utilizes both nitrate and nitrite as sole nitrogen sources, although nitrite was toxic above 1 mM.B. alba coupledin vivo acetate oxidation, but not sulfide oxidation, with nitrate and nitrite reduction.B. alba could not, however, grow anaerobically with nitrate as the sole electron acceptor. Furthermore, the incorporation of acetate into macromolecules under anaerobic conditions with nitrate as the sole electron acceptor was less 10% of the incorporation with oxygen as the electron acceptor. The product of nitrate reduction byB. alba was ammonia; N2 or N2O were not produced. The nitrate reductase activity inB. alba was soluble and it utilized reduced flavins or methyl viologen and dithionite as electron donors. Pyrimidine nucleotides were not used as in vitro electron donors, either alone or with flavins in coupled assays. TheB. alba nitrate reductase activity was competitively inhibited with chlorate and was only mildly inhibited by azide and cyanide. Nitrate was not required for induction of theB. alba nitrate reductase, and neither oxygen nor ammonia repressed its activity. Thus,B. alba nitrate reductase appears to be an assimilatory nitrate reductase with unusual regulatory properties.Non-standard abbreviations MV Methyl viologen - DT dithionite - GS glutamine synthetase - GOGAT glutamine 2-oxoglutarate aminotransferase - PPO 2-diphenyloxazole - POPOP 1,4-(bis)-[2-(5-phenyloxazolyl)] benzene - TCA trichloroacetic acid - CCCP carbonylcyanidem-chlorophenylhydrazone - FCCP carbonylcyanidep-trifluoromethoxyphenylhydrazone - TTFA thenoyltrifluoroacetone - PHEN 1,10-phenanthroline - HOQNO 2-heptyl 4-hydroxyquinoline-n-oxide - 8HQ 8-hydroxyquinoline  相似文献   

10.
J. Boucaud  J. Bigot 《Plant and Soil》1989,114(1):121-125
The activities of key enzymes involved in N assimilation were investigated after defoliation of 6-week-old ryegrass plants grown in water culture conditions. In a first experiment, nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities were measured in roots, stubble and leaves on the day of cutting and at 7-day intervals over the following 5-week period of regrowth. Ammonia assimilation enzymes showed little change whereas the nitrate reductase activity sharply decreased 2 weeks after clipping. In a second experiment, the nitrate reductase activity was measured at 2- or 3-day intervals 1 week before and 3 weeks after clipping.In vivo andin vitro assays both showed an increasing activity in leaves up to 8 days after cutting while root activity decreased. The opposite changes then occurred and both organs recovered their initial nitrate reductase activity levels after 12–14 days of regrowth. These fluctuations in nitrate reductase activity were considered to be related to the capacity for C assimilation and the nitrate availability.  相似文献   

11.
The effects of different culture conditions on nitrate reductase activity and nitrate reductase protein from Monoraphidium braunii have been studied, using two different immunological techniques, rocket immunoelectrophoresis and an enzyme-linked immunosorbent assay, to determine nitrate reductase protein. The nitrogen sources ammonium and glutamine repressed nitrate reductase synthesis, while nitrite, alanine, and glutamate acted as derepressors. There was a four- to eightfold increase of nitrate reductase activity and a twofold increase of nitrate reductase protein under conditions of nitrogen starvation versus growth on nitrate. Nitrate reductase synthesis was repressed in darkness. However, when Monoraphidium was grown under heterotrophic conditions with glucose as the carbon and energy source, the synthesis of nitrate reductase was maintained. With ammonium or darkness, changes in nitrate reductase activity correlated fairly well with changes in nitrate reductase protein, indicating that in both cases loss of activity was due to repression and not to inactivation of the enzyme. Experiments using methionine sulfoximine, to inhibit ammonium assimilation, showed that ammonium per se and not a product of its metabolism was the corepressor of the enzyme. The appearance of nitrate reductase activity after transferring the cells to induction media was prevented by cycloheximide and by 6-methylpurine, although in this latter case the effect was observed only in cells preincubated with the inhibitor for 1 h before the induction period.  相似文献   

12.
The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).  相似文献   

13.
The primary steps of N2, ammonia and nitrate metabolism in Klebsiella pneumoniae grown in a continuous culture are regulated by the kind and supply of the nitrogenous compound. Cultures growing on N2 as the only nitrogen source have high activities of nitrogenase, unadenylated glutamine synthetase and glutamate synthase and low levels of glutamate dehydrogenase. If small amounts of ammonium salts are added continuously, initially only part of it is absorbed by the organisms. After 2–3 h complete absorption of ammonia against an ammonium gradient coinciding with an increased growth rate of the bacteria is observed. The change in the extracellular ammonium level is paralleled by the intracellular glutamine concentration which in turn regulates the glutamine synthetase activity. An increase in the degree of adenylation correlates with a repression of nitrogenase synthesis and an induction of glutamate dehydrogenase synthesis. Upon deadenylation these events are reversed.—After addition of nitrate ammonia appears in the medium, probably due to the action of a membrane bound dissimilatory nitrate reductase.—Addition of dinitrophenol causes transient leakage of intracellular ammonium into the medium.  相似文献   

14.
P. A. Edge  T. R. Ricketts 《Planta》1978,138(2):123-125
Platymonas striata Butcher displays significant levels of glutamate synthase (GS) (EC 2.6.1.53) and glutamine synthetase (GOGAT) (EC 6.3.1.2.), but very low levels of glutamate dehydrogenase (GDH) (EC 1.4.1.4). This suggests that the GS/GOGAT pathway is important for nitrogen assimilation. The in vitro rates of enzyme activity can however only account for about 10% of the in vivo rates of nitrogen assimilation. Nitrogen-starvation reduced GS activity to undetectable levels. On nitrate or ammonium ion refeeding the cellular GS activity was rapidly restored, and reached levels of 56% and 91% greater than the unstarved values 24h after refeeding nitrate or ammonium respectively.Abbreviations NAR nitrate reductase - NIR nitrate reductase  相似文献   

15.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

16.
Activity of key nitrogen assimilating enzymes was studied in developing grains of high-lysine opaque sorghum P-721 and normal sorghum CSV-5. The higher percentage of protein in opaque sorghum was mainly due to lower starch content since protein per grain was less than in CSV-5. During grain development, albufn and globulin decreased while prolafne and glutelin increased. Prolafne content in CSV-5 was higher than in opaque sorghum. Average nitrate reductase activity in flag and long leaf were similar in both the varieties. The nitrate reductase activity decreased during grain development. Glutamate dehydrogenase activity was higher during early development and lower at later stages in opaque sorghum than in CSV-5. Glutamate oxaloacetate transaminase activity was higher and glutamine synthetase lower in opaque sorghum than in CSV-5 grains during development. Glutamate synthase activity was higher in opaque sorghum up to day 20 and lower thereafter than in CSV-5. It is suggested that reduced activities of glutamine synthetase as well as glutamate synthase in opaque sorghum as compared to CSV-5 during later stages of development may restrict protein accumulation in the former.  相似文献   

17.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

18.
Ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) is the last enzyme involved in the pathway of nitrate assimilation in higher plants. This paper describes the synthesis and expression of the enzyme in anaerobic coleoptiles of rice (Oryza sativa L.) and its regulation by exogenous nitrate. The activity of Fd-GOGAT was strongly inhibited by cycloheximide between 4 and 9 d of anaerobic germination. The addition of nitrate slightly increased, in the first 5 h, the specific activity of Fd-GOGAT as well as the amount of a 160-kDa protein specifically immunoprecipitated with anti-Fd-GOGAT serum. Northern blot analysis, performed with a specific riboprobe, showed the presence of mRNA of the expected size and the inductive effect of nitrate. The role of Fd-GOGAT is discussed in relation to the anaerobic assimilation of nitrate by rice coleoptiles.Abbreviations CHX cycloheximide - Fd ferredoxin - GOGAT glutamate synthase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase The authors wish to thank Dr. J. Turner (Rothamsted Experimental Station, Harpenden, UK) for providing Fd-GOGAT antibody and Dr. H. Sakakibara (Nagoya University, Nagoya, Japan) for Fd-GOGAT clone. This research was supported by the National Research Council of Italy, special project RAISA, sub-projekt N. 2, paper N. 2174.  相似文献   

19.
M. Weber  S. Schmidt  C. Schuster  H. Mohr 《Planta》1990,180(3):429-434
The extent to which the appearances of nitrite reductase (NIR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) are coordinated was studied in mustard (Sinapis alba L.) seedlings. It was established by immunotitration that the increased activities of NIR and GS in the presence of light and nitrate can be attributed to the de-novo synthesis of enzyme protein. The bulk of the NIR and GS was found in the developing cotyledons. In the absence of nitrate in the growth medium there was no coordinate appearance of NIR and GS. While light strongly stimulated the appearance of GS, the level of NIR was hardly affected and remained low. On the other hand, in the presence of nitrate in the medium the appearances of NIR and GS were strictly coordinated, the GS level being considerably above that of NIR. It is argued that phytochrome-controlled synthesis of GS in the absence of nitrate is part of the mechanism to reassimilate ammonium liberated during proteolysis of storage protein and metabolism of the resulting amino acids, whereas the strictly coordinated synthesis in the presence of light and nitrate indicates the dominance of nitrate assimilation under these circumstances. The fact that the level of GS was always considerably above that of NIR appears to be a safety measure to prevent ammonium accumulation.Abbreviations FR standardized far-red light (3.5 W·m–2), to drive the high-irradiance reaction of phytochrome - GS glutamine synthetase, EC 6.3.1.2 - NIR nitrite reductase, EC 1.7.7.1 This work was supported by Heidelberger Akademie der Wissenschaften (Forschungsstelle Nitratassimilation).  相似文献   

20.
M. J. Emes  M. W. Fowler 《Planta》1979,144(3):249-253
The intracellular distribution of the enzymes of nitrate and ammonia assimilation in apical cells of pea (Pisum sativum L.) roots is described. Nitrate reductase (EC 1.6.6.2) was found to have no organelle association, and is considered to be located in the cytosol or possibly loosely bound to the outside of an organelle. Nitrite reductase and glutamate synthase (EC 2.6.1.53) are plastid located, as is glutamine synthetase (EC 6.3.1.2) although this enzyme also has activity in the cytosol. Glutamate dehydrogenase (EC 1.4.1.3) was found only in the mitochondrion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号