首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

2.
The Enhancer-Inhibitor (En-I), also known as Suppressor-mutator (Spm-dSpm), transposable element system of maize was modified and introduced into Arabidopsis by Agrobacterium tumefaciens transformation. A stable En/Spm transposase source under control of the CaMV 35S promoter mediated frequent transposition of I/dSpm elements. Transposition occurred continuously throughout plant development over at least seven consecutive plant generations after transformation. New insertions were found at both linked and unlinked positions relative to a transposon donor site. The independent transposition frequency was defined as a transposition parameter, which quantified the rate of unique insertion events and ranged from 7.8% to 29.2% in different populations. An increase as well as a decrease in I/dSpm element copy number was seen at the individual plant level, but not at the population level after several plant generations. The continuous, frequent transposition observed for this transposon system makes it an attractive tool for use in gene tagging in Arabidopsis.  相似文献   

3.
We describe genetic screens, molecular methods and web resources newly available to utilize Dissociation (Ds) as an insertional mutagen in maize. Over 1700 Ds elements have been distributed throughout the maize genome to serve as donor elements for local or regional mutagenesis. Two genetic screens are described to identify Ds insertions in genes-of-interest (goi). In scheme I, Ds is used to generate insertion alleles when a recessive reference allele is available. A Ds insertion will enable the cloning of the target gene and can be used to create an allelic series. In scheme II, Ds insertions in a goi are identified using a PCR-based screen to identify the rare insertion alleles among a population of testcross progeny. We detail an inverse PCR protocol to rapidly amplify sequences flanking Ds insertion alleles and describe a high-throughput 96-well plate-based DNA extraction method for the recovery of high-quality genomic DNA from seedling tissues. We also describe several web-based tools for browsing, searching and accessing the genetic materials described. The development of these Ds insertion lines promises to greatly accelerate functional genomics studies in maize.  相似文献   

4.
Site-selected insertion (SSI) is a PCR-based technique which uses primers located within the transposon and a target gene for detection of transposon insertions into cloned genes. We screened tomato plants bearing single or multiple copies of maizeAc orDs transposable elements for somatic insertions at one close-range target and two long-range targets. Eight close-rangeDs insertions near the right border of the T-DNA were recovered. Sequence analysis showed a precise junction between the transposon and the target for all insertions. Two insertions in separate plants occurred at the same site, but others appeared dispersed in the region of the right T-DNA border with no target specificity. However, insertions showed a preference for one orientation of the transposon. Use of plants with multipleAc (HiAc) orDs (HiDs) elements allowed detection of somatic insertions at two single-copy genes,PG (polygalacturonase) andDFR (dihydroflavonol 4-reductase). Certain HiDs plants showed much higher rates of insertion intoPG than others. Insertions inPG andDFR were found throughout the gene regions monitored and, with the exception of one insertion inPG, the junctions between transposon and target were exact. SSI analysis of progeny from the HiDs parents revealed that in some cases the tendency to incur high levels of somatic insertions inPG was inherited. Inheritance of this character is an indication that SSI could be used to direct a search for germinalPG insertions in tomato.  相似文献   

5.
We have introduced a genetically marked Dissociation transposable element (Ds HPT ) into tomato (Lycopersicon esculentum) by Agrobacterium tumefaciens-mediated transformation. Probes for the flanking regions of the T-DNA and transposed Ds HPT elements were obtained with the inverse polymerase chain reaction (IPCR) technique and used in RFLP linkage analyses. The RFLP map location of 11 T-DNAs carrying Ds HPT was determined. The T-DNAs are distributed on 7 of the 12 tomato chromosomes. To explore the feasibility of gene tagging strategies in tomato using Ds HPT , we examined the genomic distribution of Ds HPT receptor sites relative to the location of two different, but very closely linked, T-DNA insertion sites. After crosses with plants expressing Ac transposase, the hygromycin phosphotransferase (HPT) marker on the Ds element and the excision markers -glucuronidase (GUS) and Basta resistance (BAR) facilitated the identification of plants bearing germinally transposed Ds HPT elements. RFLP mapping of 21 transposed Ds HPT elements originating from the two different T-DNA insertions revealed distinct patterns of reintegration sites.  相似文献   

6.
We have developed a transiently-expressed transposase (TET)-mediated Dissociation (Ds) insertional mutagenesis system for generating stable insertion lines in rice which will allow localized mutagenesis of a chromosomal region. In this system, a Ds containing T-DNA construct was used to produce Ds launch pad lines. Callus tissues, from single-copy Ds/T-DNA lines, were then transiently infected with Agrobacterium harbouring an immobile Ac (iAc) construct, also containing a green fluorescent protein gene (sgfpS65T) as the visual marker. We have regenerated stable Ds insertion lines at a frequency of 9–13% using selection for Ds excision and GFP counter selection against iAc and nearly half of them were unique insertion lines. Double transformants (iAc/Ds) were also obtained and their progeny yielded ~10% stable insertion lines following excision and visual marker screening with 50% redundancy. In general, more than 50% of the Ds reinsertions were within 1 cM of the launch pad. We have produced a large number of single-copy Ds/T-DNA launch pads distributed over the rice chromosomes and have further refined the Ds/T-DNA construct to enrich for “clean” single-copy T-DNA insertions. The availability of single copy “clean” Ds/T-DNA launch pads will facilitate chromosomal region-directed insertion mutagenesis. This system provides an opportunity for distribution of gene tagging tasks among collaborating laboratories on the basis of chromosomal locations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
Effective transposon tagging with theAc/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysedDs transposition frequencies andDs transposition distances in tobacco. An artificialDs element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability ofDs transposition between different tobacco lines, eight single copy T-DNA transformants were selected. Fortrans-activation of theDs elements, differentAc lines were used carrying an unmodifiedAc + element, an immobilizedsAc element and a stableAc element under the control of a heterologous chalcone synthas (chsA) promoter. With allAc elements, eachDs line showed characteristic and heritable variegation patterns at the seedling level. SimilarDs line-specificity was observed for the frequency by whichDs transpositions were germinally transmitted, as well as for the distances of theDs transpositions. ThesAc element induced transposition ofDs late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of theseDs elements (58%) transposed to genetically closed linked sites (10 cM).  相似文献   

8.
Genome-Wide Distribution of Transposed Dissociation Elements in Maize   总被引:1,自引:0,他引:1  
The maize (Zea mays) transposable element Dissociation (Ds) was mobilized for large-scale genome mutagenesis and to study its endogenous biology. Starting from a single donor locus on chromosome 10, over 1500 elements were distributed throughout the genome and positioned on the maize physical map. Genetic strategies to enrich for both local and unlinked insertions were used to distribute Ds insertions. Global, regional, and local insertion site trends were examined. We show that Ds transposed to both linked and unlinked sites and displayed a nonuniform distribution on the genetic map around the donor r1-sc:m3 locus. Comparison of Ds and Mutator insertions reveals distinct target preferences, which provide functional complementarity of the two elements for gene tagging in maize. In particular, Ds displays a stronger preference for insertions within exons and introns, whereas Mutator insertions are more enriched in promoters and 5′-untranslated regions. Ds has no strong target site consensus sequence, but we identified properties of the DNA molecule inherent to its local structure that may influence Ds target site selection. We discuss the utility of Ds for forward and reverse genetics in maize and provide evidence that genes within a 2- to 3-centimorgan region flanking Ds insertions will serve as optimal targets for regional mutagenesis.  相似文献   

9.
Mapping Ds insertions in barley using a sequence-based approach   总被引:3,自引:0,他引:3  
A transposon tagging system, based upon maize Ac/Ds elements, was developed in barley (Hordeum vulgare subsp. vulgare). The long-term objective of this project is to identify a set of lines with Ds insertions dispersed throughout the genome as a comprehensive tool for gene discovery and reverse genetics. AcTPase and Ds-bar elements were introduced into immature embryos of Golden Promise by biolistic transformation. Subsequent transposition and segregation of Ds away from AcTPase and the original site of integration resulted in new lines, each containing a stabilized Ds element in a new location. The sequence of the genomic DNA flanking the Ds elements was obtained by inverse PCR and TAIL-PCR. Using a sequence-based mapping strategy, we determined the genome locations of the Ds insertions in 19 independent lines using primarily restriction digest-based assays of PCR-amplified single nucleotide polymorphisms and PCR-based assays of insertions or deletions.The proncipal strategy was to identify and map sequence polymorphisms in the regions corresponding to the flanking DNA using the Oregon Wolfe Barley mapping population. The mapping results obtained by the sequence-based approach were confirmed by RFLP analyses in four of the lines. In addition, cloned DNA sequences corresponding to the flanking DNA were used to assign map locations to Morex-derived genomic BAC library inserts, thus integrating genetic and physical maps of barley. BLAST search results indicate that the majority of the transposed Ds elements are found within predicted or known coding sequences. Transposon tagging in barley using Ac/Ds thus promises to provide a useful tool for studies on the functional genomics of the Triticeae.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. GrandbastienThe first three authors contributed equally to this work  相似文献   

10.
Summary A mouse dihydrofolate reductase gene (DHFR), encoding an enzyme conferring methotrexate (MTX) resistance, under the control of the cauliflower mosaic virus (CaMV) 35 S promoter, was inserted within a maize nonautonomous Ds transposable element. The presence of at least one element (Ds-DHFR) can easily be monitored using methotrexate selection in plants. This chimeric element is able to transpose at a frequency similar to its unmodified progenitor in transgenic tobacco callus containing an autonomous Ac element. The orientation of the selectable marker cassette in the Ds element does not affect relative excision frequencies. Approximately two-thirds of these elements can be detected after excision while the remaining one-third cannot. The Ds-DHFR element is useful in elucidating the mechanism by which Ac/Ds transposition occurs, and allows for a rapid identification of mutants in which methotrexate resistance cosegregates with a mutant phenotype.  相似文献   

11.
We are developing a system for isolating tomato genes by transposon mutagenesis. In maize and tobacco, the transposon Activator (Ac) transposes preferentially to genetically linked sites. To identify transposons linked to various target genes, we have determined the RFLP map locations of Ac- and Dissociation (Ds)-carrying T-DNAs in a number of transformants. T-DNA flanking sequences were isolated using the inverse polymerase chain reaction (IPCR) and located on the RFLP map of tomato. The authenticity of IPCR reaction products was tested by several criteria including nested primer amplification, DNA sequence analysis and PCR amplification of the corresponding insertion target sequences. We report the RFLP map locations of 37 transposon-carrying T-DNAs. We also report the map locations of nine transposed Ds elements. T-DNAs were identified on all chromosomes except chromosome 6. Our data revealed no apparent chromosomal preference for T-DNA integration events. Lines carrying transposons at known map locations have been established which should prove a useful resource for isolating tomato genes by transposon mutagenesis.  相似文献   

12.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

13.
Summary An Ac-derived, two-component transposable element system has been developed and analyzed with respect to its use in Arabidopsis thaliana. This system consists of an immobilized Ac element (Ac clipped wing, Accl) as the source of transactivating transposase and a nonautonomous Ds element, DsA, which is inserted into a chimaeric neomycinphosphotransferase gene used as excision marker. After separate introduction of Acc1 and DsA into Arabidopsis thaliana, progeny analysis of crosses between five different Accl lines and seven different DsA lines shows that: (1) different Accl lines differ greatly in their capacity to transactivate DsA; (2) different DsA lines do not differ significantly with respect to DsA transactivation by one Accl line; (3) reintegration of excised DsA elements, both at (genetically) linked and unlinked sites, occurs in about 50% of the excision events; and (4) plants with a high rate of somatic excisions can be used as source of new DsA transpositions, allowing the creation of a large number of independent DsA insertions.  相似文献   

14.
We have developed a new community resource, called the WiscDsLox collection, for performing reverse-genetic analysis in arabidopsis. This resource is composed of 10,459 T-DNA lines generated using the Arabidopsis thaliana ecotype Columbia. The flanking sequence tag for each T-DNA insertion has been deposited in public databases, and seed for each line is currently available from the Arabidopsis Biological Resource Center. The pDsLox vector used to create this new population contains a Ds transposon and Cre/Lox recombination sites. Each WiscDsLox line therefore has the potential to serve as a launch-pad for performing local saturation mutagenesis by mobilization of the Ds element. In addition, Cre-Lox recombination between the T-DNA and a transposed Ds element should enable targeted deletion of specific genomic regions. We generated the WiscDsLox collection using an improved high-throughput pipeline that streamlines analysis of large numbers of independent Arabidopsis thaliana (L.) Hyenh. lines. In this paper we describe the details of this novel method and also provide potential users of WiscDsLox T-DNA lines with useful background information about this collection. Experiments to characterize the utility of the Ds transposon and Cre/Lox elements present in the WiscDsLox lines are in progress and will be reported in the future.  相似文献   

15.
The map positions of a set of eight T-DNA insertions in theArabidopsis genome have been determined by using closely linked visible markers. The insertions are dispersed over four of the five chromosomes. Each T-DNA insert contains one or more of the chimeric marker genes neomycin phosphotransferase (neo), hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar),-glucuronidase (gusA) and indole-3-acetamide hydrolase (iaaH). Theneo, hpt andbar marker genes are dominant in a selective germination assay or when used as DNA markers in a polymerase chain reaction. These dominant markers will allow recombinants to be discerned in a germinating F2 population, one generation earlier than with a conventional recessive marker. The transgenic marker lines will speed up and simplify the isolation of recombinants in small genetic intervals, a rate-limiting step in positional cloning strategies. The transgenic lines containing thehpt marker will also be of interest for the isolation of deletion mutants at the T-DNA integration sites.  相似文献   

16.
The feasibility of using transient transposase expression to mobilize Ds elements for gene tagging in Hieracium aurantiacum was evaluated. A T-DNA construct carrying the Ac transposase gene and either a visible marker gene (uidA) or the conditionally-lethal marker gene (codA) was transferred to H. aurantiacum leaf discs (previously transformed with a Ds element) by co-cultivation with Agrobacterium tumefaciens. Shoots were regenerated directly from the co-cultivated leaf discs under selection for antibiotic resistance resulting from Ds excision. Most regenerants carried unique transposition events. Of 84 regenerated plants, twenty one (25%) did not express the marker gene and the DNA coding sequence of the transposase could not be detected in seven (8.3%). Potential advantages of this method over conventional gene-tagging methods are: rapid recovery of individual transposition events; regenerated plants are isogenic; and the transient nature of transposase expression should facilitate the stabilisation of the transposed element.  相似文献   

17.
Six T-DNA/Ds launch pad lines (T0) previously generated by Agrobacterium-mediated transformation of M 35-1 genotype of sorghum were confirmed by PCR. T1 plants of all six lines showed 3:1 segregation when sprayed with 12 ppm Basta herbicide, indicating single copy insertion, which was also confirmed by left border flanking sequence tag. Calli derived from pNU435-T0(1) primary transformant was co-infected with Agrobacterium-carrying iAc construct for transient expression of transposase to generate stable Ds-tagged mutants in the T0 generation. All nine regenerants were PCR-positive for Ds. However, four contained intact T-DNA/Ds launch pad, while five plants carried empty launch pad, indicating transposition of the Ds. One of these plants, IDs-T0(8), was negative for iAc PCR, indicating that it was a stable Ds-tagged mutant. Of the four plants with intact T-DNA/Ds, IDs-T0(5) carrying iAc was a double transformant and mutagenic, which can generate mutants in the subsequent generation. Hence, the transient expression of transposase system in sorghum reported here can be employed for high throughput mutagenesis.  相似文献   

18.
The availability of diversified germplasm resources is the most important for developing improved rice varieties with higher seed yield or tolerance to various biotic or abiotic stresses. Here we report an efficient tool to create increased variations in rice by maize Ac/Ds transposon (a gene trap system) insertion mutagenesis. We have generated around 20,000 Ds insertion rice lines of which majority are homozygous for Ds element. We subjected these lines to phenotypic and abiotic stress screens and evaluated these lines with respect to their seed yields and other agronomic traits as well as their tolerance to drought, salinity and cold. Based on this evaluation, we observed that random Ds insertions into rice genome have led to diverse variations including a range of morphological and conditional phenotypes. Such differences in phenotype among these lines were accompanied by differential gene expression revealed by GUS histochemical staining of gene trapped lines. Among the various phenotypes identified, some Ds lines showed significantly higher grain yield compared to wild-type plants under normal growth conditions indicating that rice could be improved in grain yield by disrupting certain endogenous genes. In addition, several 1,000s of Ds lines were subjected to abiotic stresses to identify conditional mutants. Subsequent to these screens, over 800 lines responsive to drought, salinity or cold stress were obtained, suggesting that rice has the genetic potential to survive under abiotic stresses when appropriate endogenous genes were suppressed. The mutant lines that have higher seed yielding potential or display higher tolerance to abiotic stresses may be used for rice breeding by conventional backcrossing combining with molecular marker-assisted selection. In addition, by exploiting the behavior of Ds to leave footprints upon remobilization, we have shown an alternative strategy to develop new rice varieties without foreign DNA sequences in their genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Summary As an initial step towards developing a transposon mutagenesis system in tomato, the maize transposable element Ac was transformed into tomato plants via Agrobacterium tumefaciens. Southern analysis of leaf tissue indicated that in nine out of eleven transgenic plants, Ac excised from the T-DNA and reintegrated into new chromosomal locations. The comparison of Ac banding pattern in different leaves of the same primary transformant provided evidnece for transposition during later stages of transgenic plant development. There was no evidence of Ds mobilization in tomato transformants.  相似文献   

20.
Summary A line of flax, homozygous for four genes controlling resistance to flax rust, was transformed with T-DNA vectors carrying the maize transposable elements Ac and Ds to assess whether transposition frequency would be high enough to allow transposon tagging of the resistance genes. Transposition was much less frequent in flax than in Solanaceous hosts such as tobacco, tomato and potato. Transposition frequency in callus tissue, but not in plants, was increased by modifications to the transposase gene of Ac. Transactivation of the excision of a Ds element was achieved by expressing a cDNA copy of the Ac transposase gene from the Agrobacterium T-DNA 2 promoter. Progeny of three plants transformed with Ac and 15 plants transformed with Ds and the transposase gene, were examined for transposition occurring in the absence of selection. Transposition was observed in the descendants of only one plant which contained at least nine copies of Ac. Newly transposed Ac elements were observed in 25–30% of the progeny of some members of this family and one active Ac element was located 28.8 (SE=6.3) map units from the L 6 rust-resistance gene. This family will be potentially useful in our resistance gene tagging program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号