首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen consumption of Oreochromis niloticus at different stages of development was studied in relation to salinity, temperature and time of day, using a Warburg apparatus. The oxygen consumption of newly hatched (0–14 h) larvae was 3.40 μl O2 larva−1 h−1, of older yolk sac larvae 10.09 μl O2 larva−1 h−1, and of one-month-old fry 32.99 μl O2 larva−1 h−1. The QO2 values showed a decrease with development and growth, ranging from 21.2–26.0 μl O2 mg−1 h−1 in newly hatched larvae to 2.97 μl mg−1 h−1 in one-month-old fry. Changes in oxygen consumption occurred with salinity, the highest being at 17%o. Active larvae (12-24 mm T.L.) showed a doubling of consumption with a 10° C rise in temperature, and their Q10 factor increased from 2.25 to 3.43 with increasing size. Day-old yolk-sac larvae, late yolk-sac larvae (5 days old) and fry of 12 14 mm length all showed a depression in oxygen consumption at midnight followed by a dawn rise.  相似文献   

2.
SUMMARY. The oxygen consumption of shrimps ranging from 1 to 30 mg dry mass was determined at 18, 24 and 30°C using a continuous flow recording respirometer based upon a Clark-type oxygen electrode. Respiration (ascribed to routine metabolism) is described by the power curve: R = a Mb , ( R =μg O2 h−1, M = mg dry mass), which gives values of a = 1.632, 2.564 and 4.181, and b = 0.800, 0.898, and 0.793, at 18, 24 and 30°C respectively. The single expression, R = 0.008 T 1.829 M 0.830 provides a reasonable prediction of respiration as a combined function of shrimp size ( M ) and temperature (T, °C). Using an energy equivalent of 14.14 J mg O2−1 estimates of the energy requirements ( E , J h−1 10−3) of routine metabolism are given by the expression: E = 0.115 T 1.829 M 0.830.
Variability in oxygen consumption values between individuals is discussed and the observations on C. nilotica are compared with other crustacean studies.  相似文献   

3.
Unfertilised cod eggs showed a mean oxygen uptake rate at 5°C of 0.089 μl O2, dry wt.−1 h−1; this gradually rose to 0.768 μl O2 mg dry wt.−1 h−1 in eggs about to hatch. From hatching to complete yolk absorption larvae respired at 1.6 μl O2, mg dry wt.−1 h−1. During starvation following yolk absorption, uptake fell significantly to 1.1 μl O2, mg dry −1 h−1. Much of this decrease in oxygen consumption was shown to be caused by reduction in activity. Loss of weight during the embryo and larval phases could not easily be reconciled with total oxygen consumption; it is suggested that cod embryos and larvae may not rely solely upon endogenous energy reserves during development.  相似文献   

4.
Turbot Scophthalmus maximus maximum oxygen uptake following feeding and exhaustive exercise increased from 107 mg O2 kg−1 h−1 at 6° C to c . 218 mg O2 kg−1 h−1 at 18° C, then increased slightly from 18 to 22° C to 224 mg O2 kg−1 h−1. Standard oxygen uptake increased exponentially as a function of temperature from 11 mg O2 kg −1 h−1 at 6° C to 66 mg O2 kg−1 h−1 at 22° C. Gradual reduction in oxygen concentration to 87–90% air saturation at 6, 10. 18° C and <80% at 14 and 22° C limited the maximum metabolic rate but, supersaturation (>100% saturation) had little effect. Metabolic scope attained a maximum of 176 mg O2 kg−1 h−1 at 18° C. Interpolation of the results showed that this value changed little between 16 and 20° C. It is suggested that this temperature range is optimal for turbot of c . 500 g. A comparison with a previous study on feeding demand in intensive farming conditions showed a linear relationship between appetite and metabolic scope. It is concluded that the ability of a fish to supply energy (including the energy requirement of digestive metabolism) above a standard level is a limiting factor in the manifestation of its feeding demand.  相似文献   

5.
Spirogyra Link (1820) is an anabranched filamentous green alga that forms free-floating mats in shallow waters. It occurs widely in static waters such as ponds and ditches, sheltered littoral areas of lakes, and stow-flowing streams. Field observations of its seasonal distribution suggest that the 70-μm-wide filament form of Spirogyra should have a cool temperature and high irradiance optimum for net photosynthesis. Measurements of net photosynthesis and respiration were marie at 58 combinations of tight and temperature in a controlled environment facility. Optimum conditions were 25°C and 1500 μmol photons m−2 s−1, at which net photosynthesis averaged 75.7 mg O2 gdm−1 h−1. Net photosynthesis was positive at temperatures from 5° to 35°C at most irradiances except at combinations of extremely low irradiances and high temperatures (7 and 23 μmol photons m−2 s−1 at 30°C and 7, 23, and 35 μmol photons m−2 s−1 at 35°C). Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiances of 750 μmol photons m−2 s−1 or greater. Polynomials were fitted to the data to generate response surfaces; such response surfaces can be used to represent net photosynthesis and respiration in ecological models. The data indicate that the alga can tolerate the cool water and high irradiances characteristic of early spring but cannot maintain positive net photosynthesis under conditions of high temperature and low light (e.g. when exposed to self-shading ).  相似文献   

6.
Depending on the environmental conditions, imbibed seeds survive subzero temperatures either by supercooling or by tolerating freezing-induced desiccation. We investigated what the predominant survival mechanism is in freezing canola ( Brassica napus cv. Quest) and concluded that it depends on the cooling rate. Seeds cooled at 3°C h−1 or faster supercooled, whereas seeds cooled over a 4-day period to −12°C and then cooled at 3°C h−1 to−40°C did not display low temperature exotherms. Both differential thermal analysis and nuclear magnetic resonance (NMR) spectroscopy confirmed that imbibed canola seeds undergo freezing-induced desiccation at slow cooling rates. The freezing tolerance of imbibed canola seed (LT50) was determined by slowly cooling to −12°C for 48 h, followed with cooling at 3°C h−1 to −40°C, or by holding at a constant −6°C (LD50). For both tests, the loss in freezing tolerance of imbibed seeds was a function of time and temperature of imbibition. Freezing tolerance was rapidly lost after radicle emergence. Seeds imbibed in 100 μ M abscisic acid (ABA), particularly at 2°C, lost freezing tolerance at a slower rate compared with water-imbibed seeds. Seeds imbibed in water either at 23°C for 16 h, or 8°C for 6 days, or 2°C for 6 days were not germinable after storage at −6°C for 10 days. Seeds imbibed in ABA at 23°C for 24 h, or 8°C for 8 days, or 2°C for 15 days were highly germinable after 40 days at a constant −6°C. Desiccation injury induced at a high temperature (60°C), as with injury induced by freezing, was found to be a function of imbibition temperature and time.  相似文献   

7.
The respiration of coho salmon, Oncorhynchus kisutch , weighing between 15 and 50 g was measured at gradually declining oxygen levels and at temperatures ranging between 14 and 17°C. The maximum and minimum oxygen concentrations tested were 250 and 40 μmol L−1, respectively. Respiration rates were measured for 1 h periods before oxygen concentration was lowered by 12.5 or 25.0 μmol oxygen L−1. At the end of these endurance tests the oxygen level was returned to normoxic conditions and respiration rates were determined for the recovery period. Under normoxic conditions (> 200 μmol L−1) the respiration of coho levelled around 5.1 μmol g−1 wet weight h−1. At intermediate levels between 150 and 200 μmol oxygen L−1, the average rate increased to 5.8 μmol g−1 h−1, which could be attributed to higher spontaneous activity of the test animals. At low oxygen levels (< 150 μmol−1) average respiration rates dropped to values between 5.5 and 5.7 μmol g−1 h−1, reaching a minimum of 3.8 μmol g−1 h−1 at oxygen levels below 50 μmol Lμ. First mortality was observed in this range. After exposure to reduced oxygen levels the fish maintained a higher respiration rate when again exposed to normoxic oxygen levels above 200 μmol L−1. Increased respiration rates were observed for a recovery period of 6 h.  相似文献   

8.
The growth of two species of marine diatom, Thalassiosira weissflogii (Grunow) and Thalassiosira pseudonana (Hustedt), was followed in batch cultures at four concentrations of dissolved inorganic carbon from N- and C-replete lag phase into N- and/or C-deplete stationary phase. Results describe the relationship between carbon-specific growth rate (μC) and chl a :carbon (chl a :C) and glutamine:glutamate (gln:glu) ratios with changes in the cells' nutritional status (N:C), during the utilization of either NO3 or NH4 + . The use of the gln:glu ratio as an index of N:C requires further clarification. For both species and N sources, N stress resulted in a decrease in μC, chl a :C, and N:C relative to μCmax values, whereas C stress resulted in a decrease in μC and an increase in chl a :C and N:C relative to μCmax values. Both species attained a chl a :C ratio of approximately 15 μg·g 1 at μCmax using either N source. However, this value was not necessarily an indicator of maximal growth rate. NC colimitation resulted in decreased μC to values less than 20% of μCmax with only minor changes in chl a :C and N:C relative to μCmax values. Chl a :C results suggest a similarity between the light stress and C stress responses of marine diatoms. The potential for C stress in the marine environment needs to be addressed.  相似文献   

9.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

10.
Oxygen uptake rates and yolk-inclusive dry weiGhts were measured during the egg and yolk-sac larval stages of milkfish, Chanos chanos (Forsskal). Oxygen uptake by eggs and yolk-sac larvae was measured to assess the effects of four salinities (20,25,30,35 ppt) at 28°C. The effects of three temperatures (23,28,33°C) on oxygen uptake by yolk-sac larvae were determined at a salinity of 35 ppt. Dry weights were measured throughout embryonic development at 28°C and the yolk-sac stage at 23.28 and 33°C.
Oxygen uptake rates of eggs increased more than fivefold during embryogenesis (0.07±0.03 to 0.40 ± 03 μl O2 egg −1 h −1;blastula to prehatch stage). Larval oxygen uptake did not change with age but was affected by rearing temperature (0.33 ± 0.08, 0.44 ± 0.07 and 0.63 ± 0.13 μl O2 larva −1 h−1 at 23, 28 and 33°C, respectively; Q10= 1.93). Acute temperature changes from 28 to 33°C caused significant increases in oxygen uptake by embryos (Q 10= 1.69–3.58) and yolk-sac larvae (Q 10=2.55). Salinity did not affect metabolic rates.
Dry weight of eggs incubated at 28°C decreased 13% from fertilization to hatching. Incubation temperatures from 23–33°C did not affect dry weights at hatching. Rearing temperatures significantly affected the rate of larval yolk absorption (Q 10= 2.25).  相似文献   

11.
At 14° C, standard metabolic rate (75·1 mg O2 h−1 kg−1), routine metabolic rate (108.8 mg O2 h−1 kg−1), active metabolic rate ( c . 380 mg O2 h−1 kg−1), critical swimming speed (Ucrit 1·7 BL s−1), heart rate 47 min−1), dorsal aortic pressure (3·2 kPa) and ventilation frequency (63 min−1) for triploid brown trout Salmo trutta were within the ranges reported for diploid brown trout and other salmonids at the same temperature. During prolonged swimming ( c . 80% U crit), cardiac output increased by 2·3-fold due to increases in heart rate (1·8-fold) and stroke volume (1·2-fold). At 18° C, although standard and routine metabolic rates, as well as resting heart rate and ventilation frequency increased significantly, active metabolic rate and certain cardiorespiratory variables during exercise did not differ from those values for fish acclimated to 14° C. As a result, factorial metabolic scope was reduced (2·93-fold at 18° C v . 5·13-fold at 14° C). Therefore, it is concluded that cardiorespiratory performance in triploid brown trout was not unusual at 18° C, but that reduced factorial metabolic scope may be a contributing factor to the mortality observed in triploid brown trout at temperatures near 18° C.  相似文献   

12.
The optomotor reaction of juvenile Coregonus schinzipalea Val. et Cuv. and Salmo salar L. was utilized to develop a circular tube metabolism chamber to measure oxygen consumption and ammonia excretion as a function of swimming speed. The metabolism chamber with a constant water flow assured the maintenance of stable conditions. The unidirectional movement of fish was measured in a circular tube with a single narrowing. The relationships between the swimming speed and oxygen consumption or ammonia excretion described by exponential equations allowed the extrapolation towards the standard metabolism, i.e., zero swimming speed. For a juvenile coregonid (0.1–0.15 g individual weight, 2.6–2.8 cm total length) standard metabolism at 14° C was estimated as 0.65 mg02 g−1 h−1 and 17.3 μg N(NH3)g−1 h−1, whereas for juvenile salmon (136mg individual weight) respective values at 22° C were 0.047mg02g−1h−1 and 0.61 μg N(NH3)g−1 h−1. The feeding test with juvenile salmon was also performed in this circular chamber, and in both energy and nitrogen budgets after a meal the partitioning could be precisely attributed to standard metabolism, active metabolism and specific dynamic action (in the case of oxygen consumption) or postprandial nitrogen increase.
The new metabolism chamber allowed the relationship between metabolism and swimming velocity of juvenile fish with developed rheotactic response. It could be used with adult fish for similar purposes.  相似文献   

13.
Goldsinny Ctenolabrus rupestris were subjected to rapid, environmentally realistic, reductions in temperature at 2° C increments from 10 to 4° C over a 3-day period in full-strength sea water. In separate experiments, oxygen uptake measurements and ultrasound recordings of heart rate and opercular motion were carried out at regular intervals over the same temperature regime. Mean oxygen uptake rates fell from 0.042 to 0.028 ml O2 g−1 h−1 between 10 and 6° C respectively (Q10=2.71). Between 6 and 4° C mean rates decreased from 0.028 to 0.008 ml O2 g−1 h−1 (Q10=542). Mean opercular motion and heart beat rates decreased from 49.5 and 60.3 beats min−1 respectively at 10° C to 18.7 and 18.0 beats min−1 respectively at 4° C. Most goldsinny subjected to 4° C were observed in a torpid state and would not react to external stimulation. Opercular motion was erratic at 4° C and would at times cease altogether for periods up to 1.3 min duration. Heart movement was diffcult to detect at 4° C and may also have ceased for prolonged periods. Q10 values for opercular motion and heart beat rates recorded between 6 and 4° C were 6.39 and 24.52 respectively compared with values of 2.42 and 2.93 respectively recorded between 10 and 8° C. Such large depressions in metabolism appear not to have been reported previously for a marine fish species. No goldsinny mortalities were recorded at any temperature. The possibility that hypometabolic torpor is an adaptive strategy for goldsinny survival at low environmental temperatures is discussed.  相似文献   

14.
Standard metabolic rate (SMR), active metabolic rate (AMR) and critical oxygen saturation ( Scrit ) were measured in Atlantic cod Gadus morhua at 5, 10 and 15° C. The SMR was 35.5, 57.0 and 78.2 mg O2 kg−1 h−1 and Scrit was 16.5, 23.2 and 30.3%, at 5, 10 and 15° C, respectively. Previously reported SMR for Atlantic cod from arctic waters at 4° C was twice that measured at 5° C in the present study. A possible intraspecific latitudinal difference in the SMR is discussed. The AMR was 146.6, 197.9 and 200.4 mg O2 kg−1 h−1 and the critical swimming speed ( Ucrit ) was 1 6, 1.7 and 1.9 at 5, 10 and 15° C, respectively. The maximum oxygen consumption was found to be associated with exercise, rather than recovery from exercise as previously reported in another Study of Cod metabolism.  相似文献   

15.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

16.
Abstract The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0–5 mm layer of the mat: 2.0 × 109 cells cm−3 sediment, and 4.0 × 107 cells cm−3 sediment for the colorless sulfur bacteria and phototrophs, respectively. Kinetic parameters for thiosulfate-limited growth were assessed for Thiobacillus thioparus T5 and Thiocapsa roseopersicina M1, both isolated from microbial mats. For Thiobacillus T5, growing at a constant oxygen concentration of 43 μmol l−1, μmax was 0.336 h−1 and K s 0.8 μmol l−1. Phototrophically grown Thiocapsa strain M1 displayed a μmax of 0.080 h−1 and a K s of 8 μmol l−1 when anoxically grown under thiosulfate limitation. In a competition experiment with thiosulfate as electron donor, Thiocapsa became dominant during a 10-h oxic/14-h anoxic regimen at continuous illumination, despite the higher affinity for thiosulfate of Thiobacillus .  相似文献   

17.
Plants of Spinacia oleracea L. cv. Savoy grown under cold-hardening (5°C) and nonhardening (16°C) conditions were exposed to a photoinhibitory irradiance of 1300 μmol rrr: m-2 S-1 5°C for 12 h. Plants grown at 5°C exhibited a greater resistance to photoinhibition at low temperature in comparison to plants grown at 16°C as measured by the photochemical efficiency of photosyslem II. In contrast, tuily expanded leaves of plants grown at 16°C and then shifted to 5°C for 10 days did not exhibit increased resistance to photoinhibition. This was observed irrespective of the phoioperiod experienced during the shift to a lower temperature. Furthermore, spinach grown at 16°C and subsequently exposed to a stepped, daily decrease in temperature from 16 to 1°C over 10 days w ith a concomitant reduction in photoperiod. also did not exhibit any change in susceptibility to photoinhibition. Thus, a decrease in photoperiod accompanied by either an abrupt or stepped low temperature shift cannot induce increased resistance to photoinhibition. This confirms the hypothesis that growth and development at cold-hardening temperature are absolute requirements for the acquisition of resistance to photoinhibition at low temperature.  相似文献   

18.
Effects of particle size, fish size and temperature on the filtration rate of silver carp were determined. When feeding at 20°C on zooplankton and spherical particles (yeast, micronic beads and pollen), 32-g silver carp filter particles larger than 70 urn at a maximum rate of 18.251 h−1. For particles smaller than 70 μm, filtration rates decrease with decreasing particle size until there is no measured filtration for particles smaller than 10 μm. Filtering rates ( FR ) for particles between 10 and 50 μm are described by the equation, FR =−20.8 + 21.7 × log particle diameter. Filtration rates rise as fish size, particle size and temperature increase. Filtration rates per unit biomass, however, fall as fish size increases: FR = 1.54 W0.713, where FR is the maximum filtration rate in 1 h 1 fish 1 and W is weight of fish in grammes. The results of these trials are consistent with the hypothesis that particle selection by silver carp is a mechanical, passive function of gill raker morphology.  相似文献   

19.
A population of Rumex obtusifolius L. seeds imbibed for 24 h at 25°C exhibits a sigmoid logarithmic fluence-response relationship for stimulation of germination by red light (R), 11.0 μmol m−2 being necessary for 50% of the response. After 24 h imbibition at 35°C the fluence-response relationship for stimulation of germination by R is biphasic. For 50% response the very sensitive phase (very low fluence-response) requires 4.7 − 10−2μmol m−2 whereas the less sensitive phase (low fluence-response) requires 4.0 μmol m2. A few seconds of far-red light (FR) satisfies the germination requirement of the sensitive seeds after 24 h at 35°C. However, a longer period of FR (2 h) results in low germination. The fluence-response relationship for induction of these seeds by R is sigmoid, 4.8 μmol m−2 being necessary for 50% response, demonstrating that 2 h FR desensitizes the sensitive proportion of the seed population induced by 24 h at 35°C. A proportion of the seed population can be further sensitized by 60 min at 35°C following this desensitization.  相似文献   

20.
Abstract.  Metabolic rate variation with temperature, body mass, gender and feeding status is documented for Glossina morsitans centralis . Metabolic rate [mean ± SE; VCO2= 19.78 ± 3.11 μL CO2 h−1 in males (mean mass = 22.72 ± 1.41 mg) and 27.34 ± 3.86 μL CO2 h−1 in females (mean mass = 29.28 ± 1.96 mg) at 24 °C in fasted individuals] is strongly influenced by temperature, body mass and feeding status, but not by gender once the effects of body mass have been accounted for. A significant interaction between gender and feeding status is seen, similar to patterns of metabolic rate variation documented in Glossina morsitans morsitans . Synthesis of metabolic rate-temperature relationships in G. m. centralis , G. m. morsitans and Glossina pallidipes indicate that biting frequency as well as mortality risks associated with foraging will probably increase with temperature as a consequence of increasing metabolic demands, although there is little evidence for variation among species at present. Furthermore, metabolic rate–body mass relationships appear to be similarly invariant among these species. These data provide important physiological information for bottom-up modelling of tsetse fly population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号