首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by progressive and selective death of midbrain dopaminergic neurons. Pharmacologic treatment of PD can be divided into symptomatic and neuroprotective therapies.  相似文献   

2.
Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.  相似文献   

3.
Treatment of SH-SY5Y human neuroblastoma cells with copper sulphate (50-300microM) in complete medium for 24h caused an increase in the level of the metal both in whole cells and in isolated mitoplasts. Toxic effects of copper resulted in the impairment of the capability of mitochondrial dehydrogenases to reduce a tetrazolium salt, and, to a lesser extent, in the loss of the integrity of the plasma membrane. The mechanism of toxicity involved the production of reactive oxygen species, amplified by the presence of ascorbate. Decreases in the levels of several mitochondrial proteins (subunits of complex I, complex V, and of the pyruvate dehydrogenase complex) were observed. These findings demonstrate that mitochondria are an early and susceptible target of copper-mediated oxidative stress in neuronal cells and support the hypothesis that mitochondrial damage triggers the neurodegenerative processes associated with copper overload in Wilson's disease.  相似文献   

4.
1-Methyl-4-phenylpyridinium ion (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome characterized by elevation of intracellular reactive oxygen species level and apoptotic death. Adiponectin, secreted from adipose tissue, mediates systemic insulin sensitivity with liver and muscle as target organs. Adiponectin can also suppress superoxide generation in endothelial cells. In the present study, we investigated the protective effects of adiponectin on MPP+-induced cytotoxicity in human neuroblastoma SH-SY5Y cells, as well as the underlying mechanism. Our results suggest that the protective effects of adiponectin on MPP+-induced apoptosis may be ascribed to its anti-oxidative properties, anti-apoptotic activity via inducing expression of SOD and catalase, and regulation of Bcl-2 and Bax expression. These data indicated that adiponectin might provide a useful therapeutic strategy for the treatment of progressive neurodegenerative diseases such as Parkinson's disease.  相似文献   

5.
The cerebral accumulation of β-amyloid (Aβ) is a consistent feature of and likely contributor to the development of Alzheimer's disease. In addition to dysregulated production, increasing experimental evidence suggests reduced catabolism also plays an important role in Aβ accumulation. We have previously shown that neprilysin (NEP), the major protease which cleaves Aβ in vivo , is modified by 4-hydroxy-nonenal (HNE) adducts in the brain of Alzheimer's disease patients. To determine if these changes affected Aβ, SH-SY5Y cells were treated with HNE or Aβ, and then NEP mRNA, protein levels, HNE adducted NEP, NEP activity and secreted Aβ levels were determined. Intracellular NEP developed HNE adducts after 24 h of HNE treatment as determined by immunoprecipitation, immunoblotting, and double immunofluorescence staining. HNE-modified NEP showed decreased catalytic activity, which was associated with elevations in Aβ1–40 in SH-SY5Y and H4 APP695wt cells. Incubation of cells with Aβ1–42 also induced HNE adduction of NEP. In an apparent compensatory response, Aβ-treated cells showed increased NEP mRNA and protein expression. Despite elevations in NEP protein, the activity was significantly lower compared with the NEP protein level. This study demonstrates that NEP can be inactivated by HNE-adduction, which is associated with, at least partly, reduced Aβ cleavage and enhanced Aβ accumulation.  相似文献   

6.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

7.
Gliotoxin is a fungal second metabolite produced by diverse species that can be found in compost, stored crops, moist animal feed and sawdust. The role of glutathione in gliotoxin-induced toxicity was studied in order to elucidate the toxic mechanisms leading to neurite degeneration and cell death in differentiated human neuroblastoma (SH-SY5Y) cells. After 72 h of exposure to gliotoxin, moderate cytotoxicity was induced at 0.1 μmol/L, which was more severe at higher concentrations. A reduction in the number of neurites per cell was also observed. By decreasing the level of intracellular glutathione with l-buthionine-sulfoxamine (BSO) a specific inhibitor of glutathione synthesis, the cytotoxic effect of gliotoxin was significantly attenuated. The gliotoxin-induced cytotoxicity was also slightly reduced by the antioxidant vitamin C. However, the neurite degenerative effect was not altered by BSO, or by vitamin C. A concentration-dependent increase in the ratio between oxidized and reduced forms of glutathione, as well as the total intracellular glutathione levels, was noted after exposure to gliotoxin. The increase of glutathione was also reflected in western blot analyses showing a tendency for the regulatory subunit of γ-glutamylcysteine synthetase to be upregulated. In addition, the activity of glutathione reductase was slightly increased in gliotoxin-exposed cells. These results indicate that glutathione promotes gliotoxin-induced cytotoxicity, probably by reducing the ETP (epipolythiodioxopiperazine) disulfide bridge to the dithiol form.  相似文献   

8.
9.
In recent years a catechol-thioether metabolite of dopamine, 5-S-cysteinyl-dopamine, has been identified in certain dopaminergic regions of the brain, notably the Substantia Nigra. 5-S-Cysteinyl-dopamine has received great attention in view of its possible significance as an index of oxidative stress in aging and in neurodegenerative processes, particularly in Parkinson's disease. In the present study the effect of 5-S-cysteinyl-dopamine on human dopaminergic neuroblastoma SH-SY5Y cells is investigated. The substance is highly cytotoxic, even at a concentration as low as 30 microM. Treatment of the cells with 5-S-cysteinyl-dopamine induce the following intracellular responses: a decrease of the mitochondrial transmembrane potential, an increase in reactive oxygen species such as superoxide anion and peroxides, a marked decrease of reduced glutathione and an inhibition of the complex I activity. Caspase-3-like protease activation and oligonucleosomal DNA fragmentation have also been observed. These data are indicative of the onset of apoptotic processes due to 5-S-cysteinyl-dopamine.  相似文献   

10.
Moriya R  Uehara T  Nomura Y 《FEBS letters》2000,484(3):253-260
We have attempted to elucidate the precise mechanism of nitric oxide (NO)-induced apoptotic neuronal cell death. Enzymatic cleavages of DEVD-AFC, VDVAD-AFC, and LEHD-AFC (specific substrates for caspase-3-like protease (caspase-3 and -7), caspase-2, and caspase-9, respectively) were observed by treatment with NO. Western blot analysis showed that pro-forms of caspase-2, -3, -6, and -7 are decreased during apoptosis. Interestingly, Ac-DEVD-CHO, a caspase-3-like protease inhibitor, blocked not only the decreases in caspase-2 and -7, but also the formation of p17 from p20 in caspase-3 induced by NO, suggesting that caspase-3 exists upstream of caspase-2 and -7. Bongkrekic acid, a potent inhibitor of mitochondrial permeability transition, specifically blocked both the loss of mitochondrial membrane potential and subsequent DNA fragmentation in response to NO. Thus, NO results in neuronal apoptosis through the sequential loss of mitochondrial membrane potential, caspase activation, and degradation of inhibitor of caspase-activated DNase (CAD) (CAD activation).  相似文献   

11.
6-hydroxydopamine (6-OHDA)-induced apoptosis in dopaminergic neuronal cells is a common cell model of Parkinson's disease (PD). The role of apoptosis signal-regulating kinase 1 (ASK1) in this model has not been well studied. We observed significant activation of ASK1, p38 and JNK, as well as apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells exposed to 6-OHDA. Over-expressing kinase-dead mutant ASK1(K709M) or knock-down of endogenous ASK1 by its small interfering RNA (siRNA) greatly suppressed activation of these kinases and apoptosis in the cells. It was found that the activation of p38 and JNK was suppressed to almost the same extent as that of ASK1 in the ASK1-knock-down cells, suggesting that activated ASK1 is almost totally responsible for activation of p38/JNK. It was also observed that the 6-OHDA-induced cell apoptosis could be effectively prevented by over-expressing the dominant-negative mutant of p38 or p38 inhibitor SB203580, demonstrating that activation of p38/JNK signalling is required for initiating the programmed cell death. Furthermore, suppression of the 6-OHDA-generated reactive oxygen species (ROS) by pre-incubation of cells with N-acetyl-L-cysteine effectively inhibited the 6-OHDA-induced activation of ASK1, p38 and JNK, and protected the cells from apoptosis. This study clearly shows the route from ROS generation by 6-OHDA to initiation of p38/JNK signalling via activation of ASK1 in the studied PD model.  相似文献   

12.
Dopamine beta-hydroxylase exists as three forms in human neuroblastoma (SH-SY5Y) cells. The membrane-bound form of the hydroxylase contains three different species with apparent relative molecular weights of 73,000, 77,000, and 82,000. The intracellular soluble form of dopamine beta-hydroxylase was present as a single species with an apparent molecular weight of 73,000. Pulse-chase experiments showed that membranous dopamine beta-hydroxylase contains two subunit forms of 73,000 and 77,000 after short chase times. The soluble hydroxylase was synthesized as a single species of 73,000 at approximately the same rate as the lower molecular weight species of the membranous enzyme. A constitutively secreted third form of the enzyme with an intermediate apparent molecular weight also incorporated [35S]sulfate, whereas no significant amount of [35S]sulfate was observed in the cellular forms of the enzyme. The [35S]sulfate was incorporated on N-linked oligosaccharides. Approximately 12% of the enzyme is released constitutively within 1 h. These results demonstrate that neuronal cells have the ability to constitutively secrete a specific form of dopamine beta-hydroxylase which may contribute to the levels of this enzyme found in plasma.  相似文献   

13.
Celastrol, an active component found in the Chinese herb tripterygium wilfordii has been identified as a neuroprotective agent for neurodegenerative diseases including Parkinson’s disease (PD) through unknown mechanism. Celastrol can induce autophagy, which plays a neuroprotective role in PD. We tested the protective effect of celastrol on rotenone-induced injury and investigated the underlying mechanism using human neuroblastoma SH-SY5Y cells. The SH-SY5Y cells were treated with celastrol before rotenone exposure. The cells survival, apoptosis, accumulation of α-synuclein, oxidative stress and mitochondrial function, and autophagy production were analyzed. We found celastrol (500 nM) pre-treatment enhanced cell viability (by 28.99%, P < 0.001), decreased cell apoptosis (by 54.38%, P < 0.001), increased SOD and GSH (by 120.53% and 90.46%, P < 0.01), reduced accumulation of α-synuclein (by 35.93%, P < 0.001) and ROS generation (by 33.99%, P < 0.001), preserved MMP (33.93 ± 3.62%, vs. 15.10 ± 0.71% of JC-1 monomer, P < 0.001) and reduced the level of cytochrome C in cytosol (by 45.57%, P < 0.001) in rotenone treated SH-SY5Y cells. Moreover, celastrol increased LC3-II/LC3 I ratio by 60.92% (P < 0.001), indicating that celastrol activated autophagic pathways. Inhibiting autophagy by 3-methyladenine (3-MA) abolished the protective effects of celastrol. Our results suggested that celastrol protects SH-SY5Y cells from rotenone induced injuries and autophagic pathway is involved in celastrol neuroprotective effects.  相似文献   

14.
Oxidized neprilysin in aging and Alzheimer's disease brains   总被引:6,自引:0,他引:6  
Deposition of amyloid in the brain is important in the pathogenesis of Alzheimer's disease (AD), but it remains to be determined if deposition is due to increased production or decreased clearance of fibrillogenic forms of beta-amyloid (Abeta). Except for rare genetic forms of AD, there is little evidence for increased production of Abeta, but decreases in enzymes involved in the clearance of Abeta are increasingly being investigated. Neprilysin (NEP) is a major enzyme for degradation of Abeta and changes in amount or activity of NEP may play a role in Abeta deposition in AD. Since oxidative damage to proteins, including formation of adducts such as 4-hydroxynonenal (HNE), has been reported in AD, it was of interest to determine if NEP might be susceptible to oxidative modification. To address this question, monoclonal antibody immunoprecipitates of NEP were probed with polyclonal antibodies to NEP and HNE. The results showed decreased NEP in AD compared to normal controls. NEP in both AD and controls had HNE-modification and the ratio of oxidized to total NEP was greater in AD than in controls. These findings suggest that decreased NEP may contribute to Abeta deposition in AD and that age-related oxidative damage to NEP may play a role in age-related cerebral amyloidosis that is exacerbated in AD.  相似文献   

15.
We investigated the effect of vanadate, a tyrosine phosphatase inhibitor, on cell death induced by peroxynitrite in human neuroblastoma SH-SY5Y cells. Vanadate prevented cell death induced by 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor; whereas SIN-1-induced cell death was not prevented by neither okadaic acid, an inhibitor of serine/threonine phosphatases 1 and 2A, nor cyclosporin A, an inhibitor of serine/threonine phosphatase 2B. Vanadate did not prevent cell death induced by N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine, a nitric oxide donor. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not block the protective effect of vanadate, suggesting that the protective effect of vanadate is independent on PI3-kinase. Vanadate increased tyrosine phosphorylation of several proteins including the focal adhesion protein p130 Crk-associated substrate (p130(cas)). By the treatment with SIN-1, the endogenous association of p130(cas) and Crk was disrupted, and the association was restored by vanadate treatment. These results suggest that disruption of tyrosine phosphorylation signaling may be critical for peroxynitrite-induced cell death, and that vanadate prevents cell death at least in part through the enhancement in tyrosine phosphorylation of the proteins including p130(cas).  相似文献   

16.
6-Hydroxydopamine (6-OHDA) is a neurotoxin to produce an animal model of Parkinson's disease. 6-OHDA increased the formation of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), a biomarker of oxidatively damaged DNA, and induced apoptosis in human neuroblastoma SH-SY5Y cells. Iron or copper chelators inhibited 6-OHDA-induced 8-oxodG formation and apoptosis. Thus, iron and copper are involved in the intracellular oxidatively generated damage to DNA, a stimulus for initiating apoptosis. This study examined DNA damage caused by 6-OHDA plus metal ions using 32P-5′-end-labelled DNA fragments. 6-OHDA increased levels of oxidatively damaged DNA in the presence of Fe(III)EDTA or Cu(II). Cu(II)-mediated DNA damage was stronger than Fe(III)-mediated DNA damage. The spectrophotometric detection of p-quinone and the scopoletin method showed that Cu(II) more effectively accelerated the 6-OHDA auto-oxidation and H2O2 generation than Fe(III)EDTA. This study suggests that copper, as well as iron, may play an important role in 6-OHDA-induced neuronal cell death.  相似文献   

17.
18.
Background: Hydrogen peroxide, as other reactive oxygen species (ROS) produced during redox processes, induces lipid membrane peroxidation and protein degeneration causing cell apoptosis. ROS are recently considered as messengers in cell signalling processes, which, through reversible protein disulphide bridges formation, activate regulatory factors of cell proliferation and apoptosis. Disulphide bridges formation is catalysed by sulphydryl oxidase enzymes.

Aim: The neuroprotective effect of ALR protein (Alrp), a sulphydryl oxidase enzyme, on H2O2-induced apoptosis in SH-SY5Y cells has been evaluated.

Methods: Cell viability, flow cytometric evaluation of apoptotic cells, fluorescent changes of nuclear morphology, immunocytochemistry Alrp detection, Western blot evaluation of mitochondrial cyt c release and mitochondrial swelling were determined.

Results: Alrp prevents the H2O2-induced cell viability loss, apoptotic cell death and mitochondrial swelling in SH-SY5Y cells in culture.

Conclusions: The data demonstrate that Alrp improves SH-SY5Y cells survival in H2O2-induced apoptosis. It is speculated that this effect could be related to the Alrp enzymatic activity.  相似文献   

19.
N -Acetylaspartate (NAA) and N -acetylaspartylglutamate (NAAG) are related neuronal metabolites associated with the diagnosis and treatment of schizophrenia. NAA is a valuable marker of neuronal viability in magnetic resonance spectroscopy, a technique which has consistently shown NAA levels to be modestly decreased in the brains of schizophrenia patients. However, there are conflicting reports on the changes in brain NAA levels after treatment with antipsychotic drugs, which exert their therapeutic effects in part by blocking dopamine D2 receptors. NAAG is reported to be an agonist of the metabotropic glutamate 2/3 receptor, which is linked to neurotransmitter release modulation, including glutamate release. Alterations in NAAG metabolism have been implicated in the development of schizophrenia possibly via dysregulation of glutamate neurotransmission. In the present study we have used high performance liquid chromatography to determine the effects of the antipsychotic drugs haloperidol and clozapine on NAA and NAAG levels in SH-SY5Y human neuroblastoma cells, a model system used to test the responses of dopaminergic neurons in vitro . The results indicate that the antipsychotic drugs haloperidol and clozapine increase both NAA and NAAG levels in SH-SY5Y cells in a dose and time dependant manner, providing evidence that NAA and NAAG metabolism in neurons is responsive to antipsychotic drug treatment.  相似文献   

20.
目的:观察低氧预适应(HPC)对氧糖剥夺(OGD)损伤人神经母细胞瘤细胞(SH-SY5Y)的保护作用,并探讨其可能机制。方法:SH-SY5Y细胞随机分为4组:正常对照组:常规培养,不进行OGD处理;HPC处理组:将神经元放入低氧培养箱内(2% O2),30 min后立即取出,再恢复常氧培养,反复5次;OGD组:无糖培养基、低氧培养箱内(1% O2)处理细胞10 h,然后复氧复糖培养24 h;HPC+OGD处理组:细胞HPC后,行OGD处理。通过形态学观察,MTT比色法检测细胞存活率,乳酸脱氢酶(LDH)漏出量判断细胞损伤的程度,原位末端标记(TUNEL)法检测凋亡水平,Western blot检测Caspase 3、低氧诱导因子1α(HIF-1α)的蛋白表达。结果:HPC可减轻OGD引起的SH-SY5Y细胞凋亡,降低LDH漏出量,明显增加OGD组SH-SY5Y细胞的活力(P<0.05)。Western blot显示HPC+OGD组Cas-pase 3蛋白的表达明显低于OGD组(P<0.05);HIF-1α蛋白的表达明显高于OGD组(P<0.05)。结论:HPC对体外培养的SH-SY5Y细胞OGD损伤具有保护作用,其机制可能与上调HIF-1α蛋白有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号