首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide high-throughput screens in functional genomics   总被引:5,自引:0,他引:5  
The availability of complete genome sequences from many organisms has yielded the ability to perform high-throughput, genome-wide screens of gene function. Within the past year, rapid advances have been made towards this goal in many major model systems, including yeast, worms, flies, and mammals. Yeast genome-wide screens have taken advantage of libraries of deletion strains, but RNA-interference has been used in other organisms to knockdown gene function. Examples of recent large-scale functional genetic screens include drug-target identification in yeast, regulators of fat accumulation in worms, growth and viability in flies, and proteasome-mediated degradation in mammalian cells. Within the next five years, such screens are likely to lead to annotation of function of most genes across multiple organisms. Integration of such data with other genomic approaches will extend our understanding of cellular networks.  相似文献   

2.
The last two decades have witnessed an unsurpassed effort aimed at reconstructing the history of life from the genetic information contained in extant organisms. The availability of many sequenced genomes has allowed the reconstruction of phylogenies from gene families and its comparison with traditional single-gene trees. However, the appearance of major discrepancies between both approaches questions whether horizontal gene transfer (HGT) has played a prominent role in shaping the topology of the Tree of Life. Recent attempts at solving this controversy and reaching a consensus tree combine molecular data with additional phylogenetic markers. Translation is a universal cellular function that involves a meaningful, highly conserved set of genes: both rRNA and r-protein operons have an undisputed phylogenetic value and rarely undergo HGT. Ribosomal function reflects the concerted expression of that genetic network and consequently yields information about the evolutionary paths followed by the organisms. Here we report on tree reconstruction using a measure of the performance of the ribosome: antibiotic sensitivity of protein synthesis. A large database has been used where 33 ribosomal systems belonging to the three major cellular lineages were probed against 38 protein synthesis inhibitors. Different definitions of distance between pairs of organisms have been explored, and the classical algorithm of bootstrap evaluation has been adapted to quantify the reliability of the reconstructions obtained. Our analysis returns a consistent phylogeny, where archaea are systematically affiliated to eukarya, in agreement with recent reconstructions which used information-processing systems. The integration of the information derived from relevant functional markers into current phylogenetic reconstructions might facilitate achieving a consensus Tree of Life.  相似文献   

3.
4.
Interest in the study of yeast biology has increased dramatically in the past few years. Since these organisms are eukaryotic, some phenomena observed in yeast may provide a useful model for similar phenomena in multicellular organisms. Yeast has several advantages as an experimental organism and many methods used for bacteria can be adapted to them. Yeast is simple to grow, cultures are easily maintained, and classical and molecular genetic techniques can be used. The ability to approach problems genetically and biochemically has lead to substantive progess with this group of organisms in areas such as cell biology (1) and gene expression (2). This review is intended to introduce investigators to practical techniques for the growth and radioactive labeling of yeast, primarily of Saccharomyces cerevisiae. For genetic techniques, readers are referred to a recent laboratory manual (3) and reviews (4,5).  相似文献   

5.
Functions of LIM-homeobox genes   总被引:32,自引:0,他引:32  
Homeobox genes play fundamental roles in development. They can be subdivided into several subfamilies, one of which is the LIM-homeobox subfamily. The primary structure of LIM-homeobox genes has been remarkably conserved through evolution. Have their functions similarly been conserved? A host of new data has been derived from mutational analysis in diverse organisms, such as nematodes, flies and vertebrates. These studies have revealed a prominent involvement of LIM-homeodomain proteins in tissue patterning and differentiation, and their function in neural patterning is evident in all organisms studied to date. Here, we summarize the recent findings on LIM-homeobox gene function, compare the function of these genes from different organisms and describe specific co-factor requirements.  相似文献   

6.
The genetic basis of xeroderma pigmentosum.   总被引:1,自引:0,他引:1  
  相似文献   

7.
We developed population genetic theory for organelle genes, using an infinite alleles model appropriate for molecular genetic data, and considering the effects of mutation and random drift on the frequencies of selectively neutral alleles. The effects of maternal inheritance and vegetative segregation of organelle genes are dealt with by defining new effective gene numbers, and substituting these for 2N(e) in classical theory of nuclear genes for diploid organisms. We define three different effective gene numbers. The most general is N(lambda), defined as a function of population size, number of organelle genomes per cell, and proportions of genes contributed by male and female gametes to the zygote. In many organisms, vegetative segregation of organelle genomes and intracellular random drift of organelle gene frequencies combine to produce a predominance of homoplasmic cells within individuals in the population. Then, the effective number of organelle genes is N(eo), a simple function of the numbers of males and females and of the maternal and paternal contributions to the zygote. Finally, when the paternal contribution is very small, N( eo) is closely approximated by the number of females, N( f). Then if the sex ratio is 1, the mean time to fixation or loss of new mutations is approximately two times longer for nuclear genes than for organelle genes, and gene diversity is approximately four times greater. The difference between nuclear and organelle genes disappears or is reversed in animals in which males have large harems. The differences between nuclear and organelle gene behavior caused by maternal inheritance and vegetative segregation are generally small and may be overshadowed by differences in mutation rates to neutral alleles. For monoecious organisms, the effective number of organelle genes is approximately equal to the total population size N. We also show that a population can be effectively subdivided for organelle genes at migration rates which result in panmixis for nuclear genes, especially if males migrate more than females.  相似文献   

8.
Reconstructing the early evolution of photosynthesis has been guided in part by the geological record, but the complexity and great antiquity of these early events require molecular genetic techniques as the primary tools of inference. Recent genome sequencing efforts have made whole genome data available from representatives of each of the five phyla of bacteria with photosynthetic members, allowing extensive phylogenetic comparisons of these organisms. Here, we have undertaken whole genome comparisons using maximum likelihood to compare 527 unique sets of orthologous genes from all five photosynthetic phyla. Substantiating recent whole genome analyses of other prokaryotes, our results indicate that horizontal gene transfer (HGT) has played a significant part in the evolution of these organisms, resulting in genomes with mosaic evolutionary histories. A small plurality phylogenetic signal was observed, which may be a core of remnant genes not subject to HGT, or may result from a propensity for gene exchange between two or more of the photosynthetic organisms compared.  相似文献   

9.
Genetic analysis of malaria parasites has shown that the mechanisms of inheritance in these organisms are classically Mendelian. In other words, alleles of genes at different loci recombine, and alleles at the same gene locus segregate, in the progeny of a genetic cross between two genetically distinct lines of malaria parasite. Importantly, such progeny are haploid in the first filial generation following genetic crossing. Consequently, genetic analysis, including linkage analysis, can be done directly upon the cloned cross progeny. Linkage analysis conducted upon the progeny of genetic crosses between malaria parasites can lead to the location of a single gene controlling a specific phenotype, as has been achieved to identify the gene for chloroquine resistance in Plasmodium falciparum. The work involved, however, is extremely labour intensive. It involves the generation of many hundreds, to a thousand or so, of independent recombinant clones from the cross progeny and the biological characterisation, and genetic typing for hundreds of molecular genetic markers of each such clone. We discuss here a fast-track method for identifying genes controlling specific phenotypes, e.g. drug resistance/sensitivity. It involves the mass screening with quantitative molecular genetic markers of the uncloned progeny of a genetic cross following its growth under a selection pressure representing the phenotype of interest. We have called the method Linkage Group Selection.  相似文献   

10.
Symbiosis, the living together of unlike organisms, such as between microbes and their multicellular eukaryotic hosts, can be categorized as parasitic, commensal or mutualistic. The establishment of symbiosis and the outcome of microbe-host interactions are dictated largely by both microbe- and host-derived factors. Over the last decade, the nematode Caenorhabditis elegans has provided a facile experimental system to study such interactions, with parasitic interactions being the primary focus. The myriad of genetic and molecular tools available has made C. elegans a powerful model system to interrogate the interactions between a host and its pathogens, and has provided a greater understanding of the molecular underpinnings of these interactions, many of which were found to be conserved across other taxa. Commensal and mutualistic interactions between worms and their microbes, although less studied, have the potential to enhance our understanding of genetic and molecular features underlying host-microbe interactions. Here, we highlight new insights obtained in delineating the signalling pathways that function within and between host cells in combating assaults from extracellular and intracellular pathogens. We also discuss potential new insights that could be gained from further studies into commensal and mutualistic relationships between nematodes and microbes.  相似文献   

11.
Experimental dissection of bacterial genomes requires a well-developed set of genetic tools, but many bacteria lack the essential tools required for genetic analysis. Recombination of a region of chromosomal DNA from poorly characterized donor bacteria with the chromosome of a suitable surrogate host creates a genetically malleable hybrid, providing a short-cut for the detailed genetic analysis of the substituted genes. However, recombination between closely related but nonidentical DNA sequences ("homeologous recombination") is strongly inhibited, posing a powerful barrier to gene exchange between bacteria and a major impediment to the construction of genetic hybrids. By taking advantage of mutS and recD mutant recipients, it is possible to effectively overcome the recombination barrier, allowing construction of genetic hybrids in a related surrogate host. Once stably recombined into the recipient chromosome, the donor DNA can be studied with all the genetic tools available in the surrogate host. In addition to facilitating standard genetic analysis, use of a surrogate host can provide novel approaches to study the physiological roles of unique genes from poorly characterized bacteria.  相似文献   

12.
Orthologous phenotypes, or phenologs, are seemingly unrelated phenotypes generated by mutations in a conserved set of genes. Phenologs have been widely observed and accepted by those who study model organisms, and allow one to study a set of genes in a model organism to learn more about the function of those genes in other organisms, including humans. At the cellular and molecular level, these conserved genes likely function in a very similar mode, but are doing so in different tissues or cell types and can result in different phenotypic effects. For example, the RAS‐RAF‐MEK‐MAPK pathway in animals is a highly conserved signaling pathway that animals adopted for numerous biological processes, such as vulval induction in Caenorhabditis elegans and cell proliferation in mammalian cells; but this same gene set has been co‐opted to function in a variety of cellular contexts. In this review, I give a few examples of how suppressor screens in model organisms (with a emphasis on C. elegans) can identify new genes that function in a conserved pathway in many other organisms. I also demonstrate how the identification of such genes can lead to important insights into mammalian biology. From such screens, an occasional silent suppressor that does not cause a phenotype on its own is found; such suppressors thus make for good candidates as therapeutic targets.  相似文献   

13.
Structure,Function, and Evolution of Bacterial ATP-Binding Cassette Systems   总被引:1,自引:0,他引:1  
Summary: ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.  相似文献   

14.
The screening for mutants and their subsequent molecular analysis has permitted the identification of a number of genes of Arabidopsis involved in the development and functions of the gynoecium. However, these processes remain far from completely understood. It is clear that in many cases, genetic redundancy and other factors can limit the efficiency of classical mutant screening. We have taken the alternative approach of a reverse genetic analysis of gene function in the Arabidopsis gynoecium. A high-throughput fluorescent differential display screen performed between two Arabidopsis floral homeotic mutants has permitted the identification of a number of genes that are specifically or preferentially expressed in the gynoecium. Here, we present the results of this screen and a detailed characterization of the expression profiles of the genes identified. Our expression analysis makes novel use of several Arabidopsis floral homeotic mutants to provide floral organ-specific gene expression profiles. The results of these studies permit the efficient targeting of effort into a functional analysis of gynoecium-expressed genes.  相似文献   

15.
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.  相似文献   

16.
Gene knockdown approaches using antisense oligo nucleotides or analogs such as siRNAs and morpholinos have been widely adopted to study gene functions although the off-target issue has been always a concern in these studies.On the other hand,classic genetic analysis relies on the availability of loss-offunction or gain-of-function mutants.The fast development of genome editing technologies such as TALEN and CRISPR/Cas9 has greatly facilitated the generation of null mutants for the functional studies of target genes in a variety of organisms such as zebrafish.Surprisingly,an unexpected discrepancy was observed between morphant phenotype and mutant phenotype for many genes in zebrafish,i.e.,while the morphant often displays an obvious phenotype,the corresponding null mutant appears relatively normal or only exhibits a mild phenotype due to gene compensation.Two recent reports have partially answered this intriguing question by showing that a pre-mature termination codon and homologous sequence are required to elicit the gene compensation and the histone modifying complex COMPASS is involved in activating the expression of the compensatory genes.Here,I summarize these exciting new progress and try to redefine the concept of genetic compensation and gene compensation.  相似文献   

17.
The nicotinic acetylcholine receptor is among the most thoroughly characterized molecules in the nervous system, and its role in mediating fast cholinergic neurotransmission has been broadly conserved in both vertebrates and invertebrates. However, the accessory molecules that facilitate or regulate nicotinic signaling remain mostly unknown. One approach to identify such molecules is to use molecular genetics in a simple, experimentally accessible organism to identify genes required for nicotinic signaling and to determine the molecular identity of the mutant genes through molecular cloning. Because cellular signaling pathways are often highly conserved between different animal phyla, the information gained from studies of simple organisms has historically provided many critical insights into more complex organisms, including humans. Genetic screens essentially make no prior assumptions about the types of molecules involved in the process being studied; thus, they are well suited for identifying previously unknown components of cell signaling pathways. The sophisticated genetic tools available in organisms such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster have also proven extremely powerful in elucidating complex biologic pathways in the absence of prior biochemical information and for assessing a molecule's in vivo function of in the context of an intact nervous system. This review describes how genetic analysis has been used to investigate nicotinic signaling mechanisms in worms and flies, and the prospects for using these studies to gain insight into nicotinic receptor function and regulation in humans.  相似文献   

18.
Molecular genetic studies rely on well-characterized organisms that can be easily manipulated. Arabidopsis thaliana--the model system of choice for plant biologists--allows efficient analysis of plant function, combining classical genetics with molecular biology. Although the complete sequence of the Arabidopsis genome allows the rapid discovery of the molecular basis of a characterized mutant, functional characterization of the Arabidopsis genome depends on well-designed forward genetic screens, which remain a powerful strategy to identify genes that are involved in many aspects of the plant life cycle.  相似文献   

19.
Silencing of developmental genes in Hydra.   总被引:32,自引:0,他引:32  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号