首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synaptic vesicles contain a H+-ATPase that generates a proton electrochemical gradient (delta mu H+) required for the uptake of neurotransmitters into the organelles. In this study, the synaptic vesicle H+-ATPase was examined for structural and functional similarities with other identified ATPases that generate a delta mu H+ across membranes. The synaptic vesicle H+-ATPase displayed immunological similarity with the 115-, 72-, and 39-kDa subunits of a vacuolar-type H+-ATPase purified from chromaffin granules. Functionally, the ATP-dependent H+ pumping across synaptic vesicles and ATP hydrolysis were sensitive to the sulfhydryl-modifying reagents, N-ethylmaleimide and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole, at concentrations known to affect vacuolar-type H+-ATPases. In addition, as with vacuolar-type H+-ATPases, the presence of NO3-, SO4(2-), or F- inhibited the generation of a delta mu H+, but addition of vanadate or oligomycin had no effect. The delta mu H+ is a function of the pH gradient (delta pH) and membrane potential (delta psi sv) across the synaptic vesicle. Acidification (delta pH) of the synaptic vesicle interior was enhanced in the presence of permeant anions, such as Cl-, or the K+ ionophore, valinomycin. In the absence of permeant anions, the H+-ATPase generated a delta psi sv that effected the transport of L-glutamate into the synaptic vesicles. Dissipation of delta psi sv by incubation with increased external Cl- or nigericin resulted in the abolition of glutamate uptake, despite the continued maintenance of a delta mu H+ across the synaptic vesicle as a substantial delta pH. The results suggest that the synaptic vesicle H+-ATPase is of a vacuolar type and energizes the uptake of anionic glutamate by virtue of the delta psi sv component of the delta mu H+ it generates.  相似文献   

2.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Interaction of anions and ATP with the coated vesicle proton pump   总被引:5,自引:0,他引:5  
H Arai  S Pink  M Forgac 《Biochemistry》1989,28(7):3075-3082
ATP-driven proton transport in intact clathrin-coated vesicles requires the presence of a permeant anion, such as Cl-, to provide charge compensation during the electrogenic movement of protons. Using the purified (H+)-ATPase from clathrin-coated vesicles in both the detergent-solubilized and reconstituted states, we have studied the direct effects of anions on the activity of this enzyme. Both proton transport and ATP hydrolysis by the purified enzyme are independent of the presence of Cl-. In addition, proton transport does not occur even at high Cl- concentrations unless K+ and valinomycin are present to dissipate the membrane potential generated. These results indicate that the anion channel which provides for Cl- flux in intact coated vesicles is not a component of the purified (H+)-ATPase. Inhibition of ATPase activity is observed in the presence of I-, NO3-, or SO4(2-), with 50% inhibition occurring at 350 mM I-, 50 mM NO3-, or 40 mM SO4(2-). The presence of ATP lowers the concentration of I- required for 50% inhibition from 350 mM to 100 mM and increases the maximal inhibition observed in the presence of NO3- from 65% to 100%. Two separate mechanisms appear to be responsible for anion inhibition of the (H+)-ATPase. Thus, I- and high concentrations of NO3- (in the presence of ATP) cause inhibition by dissociation of the (H+)-ATPase complex, while SO4(2-) and NO3- (in the absence of ATP) cause inhibition without dissociation of the complex, suggesting the existence of an inhibitory anion binding site on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Measurements were made of the difference in the electrochemical potential of protons (delta-mu H+) across the membrane of vesicles restituted from the ATPase complex (TF0.F1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential (delta psi) and pH difference across the membrane (delta pH), respectively. In the presence of Tris buffer the maximal delta psi ans no delta pH were produced, while in the presence of the permeant anion NO-3 the maximal delta pH and a low delta psi were produced by the addition of ATP. When thATP concentration was 0.24 mm, the delta psi was 140-150 mV (positive inside) in Tris buffer, and the delta pH was 2.9-3.5 units (acidic inside) in the presence of NO-3. Addition of a saturating amount of ATP produced somewhat larger delta psi and delta pH values, and the delta -muH+attained was about 310mV. By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4-5 during ATP hydrolysis. The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

5.
A large percentage (up to 70%) of 36Cl- influx in brush-border membrane vesicles from rat small intestine under equilibrium exchange conditions was found to be mediated by SITS-inhibitable anion exchange. This Cl-/anion exchange could be measured 10-15-times more sensitive by determining the uptake of trace amounts of 125I- driven by a large Cl- gradient (in greater than out) generated by passing the vesicles through an anion-exchange column. Voltage clamping of the vesicle membrane with K+ and valinomycin did not effect the chloride driven 125I- uptake, showing that the 'overshooting' I- uptake was not mediated by an electrical diffusion potential, as might be generated by the Cl- gradient in the presence of a chloride channel. The Cl-/anion exchange was further characterized in brush-border membrane vesicles from both rat ileum and jejunum by studying the inhibitory action of various anions on the Cl- driven I- uptake. NO3-, Cl-, SCN- and formate at 2 mM could inhibit Cl-/I- exchange for more than 80%. The ileal brush-border membrane vesicles displayed a clear heterogeneity with respect to the inhibitory action of SO2-(4), SITS and HCO-3 on Cl-/I- exchange. Approximately 30% of the Cl-/I- exchange was insensitive to SO2-(4) and showed a relatively low sensitivity to SITS (IC50 = 1 mM) but could be inhibited for 80% by 2 mM HCO-3. Presumably this component represents Cl-/OH- or Cl-/HCO-3 exchange. The residual 70% showed a high sensitivity to SO2-(4) (IC50 = 0.5 mM) and SITS (IC50 = 2.5 microM) but was less sensitive to HCO-3. This part of the exchange activity showed inhibition characteristics very similar to the Cl-/I- exchange in the jejunal vesicles. The latter process was also inhibited for 80% by 2 mM oxalate. As discussed in this paper both exchangers may be involved in the electroneutral transport of NaCl across the apical membrane of the small intestinal villus cell.  相似文献   

6.
During endocytosis, mannosylated ligands enter vesicles which have a density intermediate between that of the plasma membrane and secondary lysosomes. Mannosylated ligands are transferred from these vesicles to lysosomes. A solubilization-precipitation assay was used to study the dissociation of mannosylated ligands from their receptor. In whole cells dissociation was rapid (t 1/2 (37 degrees C) = 8 min) and took place before delivery of the ligand to lysosomes. Receptor-ligand dissociation within membrane vesicles, washed free of cytosol, could be induced by addition of ATP and GTP but not ADP. Receptor-ligand dissociation caused by manipulating the pH of the vesicles suggested that the pH within endosomes was lowered to 5.5 by addition of ATP. Dissociation was blocked by proton ionophores and Zn2+, but was unaffected by inhibitors of the F1, Fo-ATPase or the Na+,K+-ATPase. Dissociation did not require Na+ or K+ and was blocked by anion transport inhibitors. Dissociation was slowed in the absence of permeant anions (Cl-). Receptor-ligand complexes within vesicles isolated as early as 2 min following ligand internalization responded to addition of ATP. The results suggest that receptor-ligand dissociation in endosomes requires ATP, possibly to power endosomal acidification via an ATP-dependent proton pump. Dissociation is enhanced in the presence of permeant anions, suggesting the involvement of an anion channel or carrier.  相似文献   

7.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

9.
The effects of local anesthetics and barbiturates on the ATP-dependent H+ transport in synaptic vesicle membranes from rat brain were studied using a fluorescent probe, acridine orange. Local anesthetics depressed the active H+ transport with the following order of potencies: tetracaine trimecaine lidocaine procaine. Respective IC50 values were 0.07, 0.28, 0.46 and 0.60 mM. The local anesthetics also disrupted the endogenous pH gradient seen in the absence of ATP. Barbiturates inhibited the active H+ transport showing IC50 values in the range of 2-5 mM except for benzobarbital and barbital characterized by IC50 values of 0.5 and 20 mM, respectively. The order of potencies was benzobarbital hexobarbital amobarbital pentobarbital phenobarbital barbital. The endogenous pH gradient was not affected by the barbiturates. The results show that local anesthetics disrupt the H+ transport by acting as permeable weak bases (uncouplers) whereas barbiturates are likely to block and anion channel which maintains electroneutrality of the H+ transport in the membrane of synaptic vesicles.  相似文献   

10.
The mechanism for HCO3-(-)independent proton permeability in microvillus membrane vesicles (MVV) isolated from human placenta was examined by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Proton fluxes (JH) across MVV were determined in response to induced pH and anion gradients from the time course of 6CF fluorescence, the MVV buffer capacity, and the 6CF vs. pH calibration. In the absence of anions, JH was 12 +/- 2 nequiv s-1 (mg of protein)-1 (pHin 7.4, pHout 6.0, MVV voltage-clamped with K+/valinomycin, 23 degrees C), corresponding to a proton permeability coefficient of 0.02 cm/s, with an activation energy of 9.1 +/- 0.3 kcal/mol. JH was inhibited 20% by dihydro-4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (H2DIDS) with KI = 8 microM [( Cl-]out = 0 mM). For a 0.5-unit pH gradient JH increased from 1.5 to 4.6 nequiv s-1 (mg of protein)-1 as the internal MVV pH was increased (5.5-7.5). External Cl-, Br-, and I- (but not SO4(2-) and PO4-) increased JH 1.3-2.5-fold for both inwardly and outwardly directed pH gradients with KD = 1.0 +/- 0.4 mM (Br-) and greater than 100 mM (Cl-). This increase was blocked by 100 microM H2DIDS but not by amiloride or furosemide. Internal Cl- did not alter JH induced by pH gradients nor were proton fluxes induced by anion gradients in the absence of a pH gradient. Experiments in which JH was driven by membrane potentials (induced by valinomycin and K+ gradients) indicated that proton transport was voltage-sensitive. These experiments demonstrate a stilbene-sensitive electrogenic proton transport mechanism in MVV that is regulated allosterically by anions at an external binding site.  相似文献   

11.
The fluorescent anion indicator 6-methoxy-N-(3-sulfopropyl)quinolinium was trapped in proteoliposomes reconstituted with purified 32-kDa uncoupling protein and used to detect GDP-sensitive uniports of Cl-, Br-, and I-. Transport of these halide anions was rapid and potential-dependent. F- and nitrate were found to inhibit Cl- uptake competitively, suggesting that these anions are also substrates for transport. This preparation also exhibited H+(OH-) transport, showing that the reconstituted uncoupling protein possesses both halide and H+ transport functions, as is observed in intact brown adipose tissue mitochondria. Cl- transport was inhibited to the residual level observed in liposomes without protein when GDP was present on both sides of the membrane. Cl- transport was inhibited by about 50% when GDP was present only on one side of the membrane. We infer that uncoupling protein reconstitutes into proteoliposomes with a 1:1 ratio of sidedness orientation. The Km values for Cl- uniport were 100 and 65 mM, respectively, in GDP-loaded and non-GDP-loaded vesicles. Participation of the inner membrane anion channel in the observed transport is rendered unlikely by the fact that this carrier is insensitive to GDP. A variety of additional experiments probing for inner membrane anion channel yielded uniformly negative results, confirming the absence of contamination by this protein. Our results therefore demonstrate that the uncoupling protein mediates anion translocation, a function previously reported as lacking in the reconstituted system.  相似文献   

12.
An ATP-driven Cl- pump in the brain   总被引:2,自引:0,他引:2  
EDTA-treated microsomes prepared from rat brain mainly consisted of sealed membrane vesicles 200-500 nm in diameter and were rich in both Cl- -ATPase and Na+,K+-ATPase activities. Such Cl- -ATPase-rich membrane vesicles accumulated Cl- in an ATP-dependent and osmotically reactive manner in the presence of 1 nM ouabain. The Cl- uptake was maximally stimulated by ATP with a Km value of 1.5 mM; GTP, ITP, and UTP partially stimulated Cl- uptake, but CTP, beta, gamma-methylene ATP, ADP, and AMP did not. The ATP-dependent Cl- uptake was accelerated by an increase in the medium Cl- concentration with a Km value of 7.4 mM. Such stimulation of Cl- uptake by ATP was dependent on the pH of the medium, with an optimal pH of 7.4, and also on the temperature of the medium, with an optimal range of 37-42 degrees C. Ethacrynic acid dose dependently inhibited the ATP-dependent Cl- uptake with a concentration for half-maximal inhibition at 57 microM. N-ethylmaleimide (0.1 mM) completely inhibited and sodium vanadate (1 mM) partially inhibited the ATP-dependent Cl- uptake. The membrane vesicles did not accumulate H+ in the Cl- uptake assay medium. The ATP-dependent Cl- uptake profile agreed with that of Cl- -ATPase activity reported previously (Inagaki, C., Tanaka, T., Hara, M., and Ishiko, J. (1985) Biochem. Pharmacol. 34, 1705-1712), and this strongly supports the idea that Cl- -ATPase in the brain actively transports Cl-.  相似文献   

13.
The whole cell configuration of the patch clamp technique was used to investigate the mechanism underlying rectification of the isoproterenol- activated chloride (Cl-) current in isolated guinea pig ventricular myocytes. When extracellular Cl- was replaced with either bromide (Br- ), glutamate (Glut), iodide (I-), isethionate (Iseth), or nitrate (NO3- ), the magnitude of the shift in reversal potential of the macroscopic current suggested the following selectivity sequence: NO3- > Br- > or = Cl- > or = I- > Iseth > or = Glut. This information was used to investigate the role of permeant ions in rectification of this current. Consistent with previous observations, when the concentration of intracellular Cl- (Cli-) was less than the concentration of extracellular Cl- (Clo-) (40 mM Cli-/150 mM Clo-) the current exhibited outward rectification, but when Cli- was increased to equal that outside (150 Cli-/150 Clo-), the current no longer rectified. Rectification in the presence of asymmetrical concentrations of permeant ions on either side of the membrane is predicted by constant field theory, as described by the Goldman-Hodgkin-Katz current equation. However, when the Cl- gradient was reversed (150 Cli-/40 Clo- ) the current did not rectify in the opposite direction, and in the presence of lower symmetrical concentrations of Cl- inside and out (40 Cli-/40 Clo-), outward rectification did not disappear. Reducing Cli- by equimolar replacement with glutamate caused a concentration dependent increase in the degree of rectification. However, when Cli- was replaced with more permeant anions (NO3- and Br-), rectification was not observed. These results can be explained by a single binding site model based on Eyring rate theory, indicating that rectification is a function of the concentration and the permeability of the anions in the intracellular solution.  相似文献   

14.
Acidification and ion permeabilities of highly purified rat liver endosomes   总被引:7,自引:0,他引:7  
While it is well established that acidic pH in endosomes plays a critical role in mediating the orderly traffic of receptors and ligands during endocytosis, little is known about the bioenergetics or regulation of endosome acidification. Using highly enriched fractions of rat liver endosomes prepared by free flow electrophoresis and sucrose density gradient centrifugation, we have analyzed the mechanism of ATP-dependent acidification and ion permeability properties of the endosomal membrane. This procedure permitted the isolation of endosome fractions which were up to 200-fold enriched as indicated by the increased specific activity of ATP-dependent proton transport. Acidification was monitored using hepatocyte and total liver endosomes selectively labeled with pH-sensitive markers of receptor-mediated endocytosis (fluorescein isothiocyanate asialoorosomucoid) or fluid-phase endocytosis (fluorescein isothiocyanate-dextran). In addition, changes in membrane potential accompanying ATP-dependent acidification were directly measured using the voltage-sensitive fluorescent dye Di-S-C3(5). Our results indicate that ATP-dependent acidification of liver endosomes is electrogenic, with proton transport being accompanied by the generation of an interior-positive membrane potential opposing further acidification. The membrane potential can be dissipated by the influx of permeant external anions or efflux of internal alkali cations. Replacement externally of permeable anions with less permeable anions (e.g. replacing Cl- with gluconate) diminished acidification, as did replacement internally of a more permeant cation K+ with less permeant species (such as Na+ or tetramethylammonium). ATP-dependent H+ transport was not coupled to any specific anion or cation, however. The endosomal membrane was found to be extremely permeable to protons, with protons able to leak out almost as fast as they are pumped in. Thus, the internal pH of endosomes is likely to reflect a dynamic equilibrium of protons regulated by the intrinsic ion permeabilities of the endosomal membrane, in addition to the activity of an ATP-driven proton pump.  相似文献   

15.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

16.
J Shioi  S Naito    T Ueda 《The Biochemical journal》1989,258(2):499-504
Measurements have been made of the ATP-dependent membrane potential (delta psi) and pH gradient (delta pH) across the membranes of the synaptic vesicles purified from bovine cerebral cortex, using the voltage-sensitive dye bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxanol and the delta pH-sensitive fluorescent dye 9-aminoacridine respectively. A pre-existing small delta pH (inside acidic) was detected in the synaptic vesicles, but no additional significant contribution by MgATP to delta pH was observed. In contrast, delta psi (inside positive) increased substantially upon addition of MgATP. This ATP-dependent delta psi was reduced by thiocyanate anion (SCN-), a delta psi dissipator, or carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a protonmotive-force dissipator. Correspondingly, a substantially larger glutamate uptake occurred in the presence of MgATP, which was inhibited by SCN- and FCCP. A nonhydrolysable analogue of ATP, adenosine 5'-[beta gamma-methylene]triphosphate, did not substitute for ATP in either delta psi generation or glutamate uptake. The results support the hypothesis that a H+-pumping ATPase generates a protonmotive force in the synaptic vesicles at the expense of ATP hydrolysis, and the protonmotive force thus formed provides a driving force for the vesicular glutamate uptake. The delta psi generation by ATP hydrolysis was not affected by orthovanadate, ouabain or oligomycin, but was inhibited by N-ethylmaleimide, quercetin, trimethyltin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid. These results indicate that the H+-pumping ATPase in the synaptic vesicle is similar to that in the chromaffin granule, platelet granule and lysosome.  相似文献   

17.
Changes in pH in rat brain synaptic vesicles (SV) were studied with the use of the fluorescent slightly basic dye acridine orange. The pH value in isolated SV was found to be acidic, which was confirmed by the ionophore sensitive accumulation of the dye. Addition of ATP provoked further acidification of the intravesicular medium. The acidification rate reached a maximum after dissipation of the existing H+ gradient seen during preincubation in the absence of ATP. The ATP-dependent acidification was eliminated by the protonophore carbonylcyanide m-chlorophenylhydrazone, H4Cl or the detergent triton X-199 (0.025%). Valinomycin inhibited the ATP-dependent translocation of H+ whatever the incubation medium (with KCl or NaCl). Dicyclohexylcarbodiimide, a known inhibitor of proton ATPases (100 microM) as well as ethylmaleimide (100 microM) completely blocked H+ translocation whereas oligomycin, a specific blocker of mitochondrial H+-ATPase, and ouabain did not influence that process. ATP induced H+ translocation only in the presence of Mn2+ or Mg2+ but not in the presence of Ca2+. The translocation of H+ was not affected by the replacement of univalent cations (KCl, NaCl or Cl), however, it was prevented completely upon replacement of the penetrating anion Cl- by the non-penetrating anion O2-4 or upon replacement of the salts by sucrose. It is concluded that the ATP-dependent translocation of H+ in SV is mediated via H+-ATPase which maintains the low pH value in SV.  相似文献   

18.
Endocytic vesicles possess an electrogenic proton pump, and measurements of ATPase activity suggest that Cl- may stimulate proton pump activity. This study was undertaken to measure the steady-state pH, potential (delta psi), and total proton electrochemical gradients established by the rat liver multivesicular body (MVB) proton pump and to examine the effects of Cl- (0.5-140 mM) on these gradients. Radiolabeled [( 14C] methylamine and 36Cl-) and fluorescent (fluorescein isothiocyanate-conjugated low density lipoproteins) probes were used to assess internal pH (pHi) and delta psi. In the absence of ATP, pHi averaged 7.37 +/- 0.05 (extracellular pH 7.31 +/- 0.02), and delta psi ranged from -32 to -71 mV; but neither pHi nor delta psi varied consistently with [Cl-]. In the presence of ATP, pHi decreased progressively with increasing [Cl-] to a plateau value of about 5.89 at greater than or equal to 25 mM Cl-, and MVB exhibited an interior positive delta psi that was maximal at the lowest Cl- concentration (+65.5 mV) and decreased as medium Cl- increased. The total ATP-dependent proton electrochemical gradient (proton-motive force (delta p] averaged 118.0 +/- 4.3 mV and did not change in any consistent manner as [Cl-] varied almost 300-fold. However, initial rates of MVB acidification increased with increasing [Cl-]. These studies indicate that: (a) in the absence of ATP, isolated MVB exhibited a negative delta psi, probably a Donnan potential; (b) in the presence of ATP and at a [Cl-] similar to that in hepatocyte cytoplasm (25 mM), MVB pHi was 5.89, and delta psi was +9.6 mV; and (c) over the range of [Cl-] tested, the magnitudes of delta pH and delta psi were inversely related, apparently related to Cl- availability, but the ATP-dependent delta p did not vary. Therefore, it is concluded that Cl- increases the initial rate of vesicle acidification in MVB and also affects the relative chemical and electrical contributions of the steady-state proton pump-determined delta p. Cl-, however, does not alter steady-state delta p.  相似文献   

19.
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM ATP-Mg. However, in the case of resting vesicles, the presence of valinomycin and an inward Cl-gradient was also necessary for Mg-ATP-dependent proton transport. Measurement of K+ and Cl-diffusion potentials using 3,3-dipropylthiadicarboxocyanine iodide as a potential sensitive dye showed that both resting and stimulated vesicles developed K+ gradient-dependent potentials in the presence of an impermeant anion, but that Cl- gradient-dependent potentials were observed only in the stimulated preparation. 86Rb+ self-exchange was found in both types of vesicles, but Cl- self-exchange was confined to vesicles derived from stimulated mucosae. Putative inhibitors of anion conductance such as furosemide and anthracene 9-carboxylic acid blocked proton transport, Cl- conductance, 36Cl- uptake, and Cl- exchange. The inhibition of proton transport was overcome by valinomycin. ATPase activity in the presence of nigericin, an H+:K+ exchanger, was unaffected by these inhibitors. K+ conductance, Rb+ uptake, and Rb+ exchange were insensitive to these inhibitors. Thus, activation of acid secretion by the stimulated parietal cell appears to involve at least the appearance of a discrete Cl- conductance in the pump-associated membrane.  相似文献   

20.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号