首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacteriocin from cells with a mutant Clo DF13 plasmid (cloacin clp03· immunity protein complex) and a bacteriocin from cells containing the recombinant plasmic Clo DF13 :: Tn901 (cloacin pJN82) have been isolated. Both bacteriocins like wild-type cloacin DF13, are still able to inhibit in vitro protein synthesis, but their in vivo killing activity is absent. Comparison of some physicochemical characteristics of the cloacin clp03 · immunity protein complex and wild-type cloacin complex showed no significant differences.From a comparison of the binding capacity to specific receptors on sensitive cells, the translocation through the cell wall, and the interaction with cytoplasmic membranes, it could be concluded that the cloacin clp03 complex is hampered in its translocation from the outer membrane receptor site to the cytoplasmic membrane, resulting in the observed lack in killing activity.Cloacin pJN82 is shortened at the C-terminal of the molecule by approximately ten amino acid residues. Together with its loss of in vivo killing activity it has lost its capacity to bind immunity protein. Since the immunity protein probably not only provides cloacin-producing cells with “immunity” but is also involved in the translocation of the bacteriocin to the interior of sensitive cells, the absence of this protein is probably the reason for the lack of killing activity of cloacin pJN82.The implications of these findings for the topography of the cloacin molecule as suggested by de Graaf et al. (de Graaf, F.K., Stukart, M.J., Boogerd, F.C. and Metselaar, K. (1978) Biochemistry, in press) are discussed.  相似文献   

2.
Cell of Enterobacter cloacae (Clo DF13) produce a bacteriocin which is characterized by its very effective killing activity against sensitive bacteria. Purification and characterization of the excreted bacteriocin has revealed that this bacteriocin consists of an equimolar complex of two plasmid-specific gene products: the cloacin and its inhibitor the immunity protein. Dissociation of the complex by treatment with sodium dodecylsulfate induces the endonucleolytic activity of the cloacin but strongly reduces the killing activity. The purified complex possesses no activity in vitro. Both cloacin and immunity protein isolated from the complex were functionally identical to cloacin and immunity protein purified from the bacteriocinogenic cells by other methods. Reconstitution of the complex results in a partial restoration of killing activity.  相似文献   

3.
After nitrosoguanidine mutagenesis, a mutant Escherichia coli strain harboring the Clo DF13::Tn901 plasmid pJN03 was isolated that is thermosensitive (Ts) for growth at 43 degrees C. The mutation responsible for this thermosensitive phenotype resides on the pJN03 plasmid genome. Cells harboring the pJN03 cop-1(Ts) plasmid mutant showed a large increase in plasmid copy number at 43 degrees C accompanied by an increase in the synthesis of plasmid-specified gene products like cloacin DF13 and beta-lactamase. The pJN03 cop-1(Ts) mutant showed uncontrolled plasmid DNA replication at the nonpermissive temperature. Analysis of plasmid deletions showed that the mutation is located in the Clo DF13 map interval from 0 to 12% or 29 to 45%. This implies that native cloacin DF13 and the Clo DF13-specified polypeptides B, C, D, E, and G are not involved in the pleiotropic phenotype of the plasmid mutant pJN03 cop-1(Ts).  相似文献   

4.
Summary Three Clo DF13 mutant plasmids (designated asclp03, clp05 andclp21) that show a decreased cloacin activity were isolated. The decreased cloacin activity was not due to a reduced number of Clo DF13 copies per cell. The cloacins produced by theclp03 and theclp21 mutant plasmids have a strongly decreased killing activityin vivo in comparison with the wild type cloacin and the cloacin of theclp05 mutant plasmid. Furthermore no lacunae could be observed fromclp03 orclp21 harbouring strains, while strains harbouring theclp05 plasmid showed a 50–100 times decreased frequency of lacunae. In addition theclp05 mutant showed a decreased rate of RNA synthesis inclp05 harbouringEscherichia coli minicells. No complementation between the three mutant plasmids was observed. We suggest that theclp03 andclp21 mutations are located in the gene coding for the cloacin. Since the cloacin produced by theclp05 mutant plasmid has retained all the known wild type cloacin activities, the reduced inhibition zone in the stab test is probably caused by a mutation affecting the expression of the cloacin gene. The nature of this mutation is discussed.  相似文献   

5.
In this paper we present the complete nucleotide sequence of the bacteriocin gene of plasmid Clo DF13. According to the predicted aminoacid sequence the bacteriocin, cloacin DF13, consists of 561 aminoacids and has a molecular weight of 59,293 D. To obtain insight into the structure and function of specific parts of the cloacin molecule, we constructed a hydration profile and we predicted the secondary structure of the protein. According to our predictions, the N-terminus of cloacin DF13 (corresponding to the first 150-180 aminoacids) is relatively hydrophobic and is rich in glycine residues. The data obtained support previous findings that the N-terminal part of cloacin DF13 is involved in translocation of this protein across the cell membrane. The C-terminal part of the cloacin protein is rich in positively charged aminoacids; this might reflect the RNase activity located within this domain. A comparison of the bacteriocin genes and corresponding proteins of Clo DF13 and Col E1 did not reveal any homology at the level of either the nucleotide or the aminoacid sequence. The codon usage of both genes, however, exhibits striking similarities. The sequence data obtained during this study enabled us to present the nucleotide sequence of the entire cloacin operon. The structure of this operon and the regulation of expression of the genes, located within this operon, is discussed.  相似文献   

6.
The nucleotide sequence of the Clo DF13 DNA region comprising the immunity gene has been determined. We also elucidated the aminoacid sequence of the 40 N-terminal and 7 C-terminal aminoacids of the purified immunity protein. From analysis of the data obtained we were able to locate the immunity gene between 11.7 and 14.5% on the Clo DF13 map, and to determine the complete aminoacid sequence of the immunity protein. It was observed that the Clo DF13 immunity gene encodes an 85 aminoacid protein and is transcribed in the same direction as the cloacin gene. These experimental data support our model, presented elsewhere, which implicates that the cloacin and immunity genes of Clo DF13 are coordinately transcribed from the cloacin promoter. We also present DNA sequence data indicating that an extra ribosome binding site precedes the immunity gene on the polycistronic mRNA. This ribosome binding site might explain the fact that in cloacinogenic cells more immunity protein than cloacin is synthesized. The comparison of the complete aminoacid sequence of the Clo DF13 immunity protein, with the aminoacid sequence data of the purified, comparable Col E3 immunity protein revealed that both proteins have extensive homologies in primary and secondary structure, although they are exchangeable only to a low extent in vivo and in vitro. It was also observed that a lysine residue was modified in immunity protein isolated from excreted bacteriocin complexes.  相似文献   

7.
Monoclonal antibodies (MAb) directed against different epitopes on the equimolar complex of cloacin and immunity protein (cloacin DF13) were isolated, characterized, and used to study the uptake of cloacin DF13 by susceptible cells. Four MAbs recognized the amino-terminal part, one MAb recognized the central part, and three MAbs recognized the carboxyl-terminal part of the cloacin molecule. Three MAbs reacted with the immunity protein. Five MAbs inhibited the lethal action of cloacin DF13, but none of the MAbs inhibited the binding of cloacin DF13 to its purified outer membrane receptor protein or the in vitro inactivation of ribosomes. Binding of cloacin DF13 to susceptible cells cultured in broth resulted in a specific, time-dependent dissociation of the complex and a fragmentation of the cloacin molecules. Increasing amounts of immunity protein were detected in the culture medium from about 20 min after the addition of cloacin DF13. Cloacin was fragmented into two carboxyl-terminal fragments with relative molecular masses of 50,000 and 10,000. The larger fragment was detected 5 min after the binding of the bacteriocin complex to the cells. The smaller fragment was detected after 10 min. Both fragments were associated with the cells and could not be detected in the culture supernatant fraction. Cells grown in brain heart infusion were much less susceptible to cloacin DF13 than cells grown in broth, although they possessed a similar number of outer membrane receptor molecules. This decreased susceptibility correlated with a decreased translocation, dissociation, and fragmentation of cloacin DF13.  相似文献   

8.
The in vitro neutralization of the killing activity of cloacin DF13 by incubation with its purified receptor protein was shown to be the result of the formation of a direct and specific equimolar complex of both proteins. The binding of cloacin DF13 to its receptor protein did not result in a fragmentation of the cloacin molecules nor in the expulsion of immunity protein from the bacteriocin. The rate of the cloacin DF13-receptor interaction in vitro was found to be enhanced significantly in the presence of peptidoglycan, but lysozyme-treated peptidoglycan did not affect this interaction. Incubation of the cloacin DF13 as well as its receptor protein with peptidoglycan showed that the receptor protein but not the cloacin DF13 was able to bind to the peptidoglycan.  相似文献   

9.
10.
The production and the mechanism of excretion of cloacin DF13 were investigated in noninduced and mitomycin C-induced cell cultures. A mitomycin C concentration was selected which did not cause lysis of cloacinogenic cells, but at the same time induced a maximal production of cloacin DF13. Native cloacin DF13, possessing killing activity, was first released into the cytoplasm. Shortly thereafter, the bacteriocin was transported through the cytoplasmic membrane and accumulated in the periplasm. Finally, cloacin DF13 was excreted into the culture medium. A small amount of cloacin DF13 remained associated with the cell surface. Producing cells did not become permeable for the cytoplasmic enzyme beta-galactosidase. Apparently the cloacin DF13 leaves the producing cells by an excretion process which is not similar to the mechanism proposed for bacterial secretory proteins. The processes of excretion by producing cells and of uptake by susceptible cells were also not identical because mutant cloacin DF13, which was not transported through the outer membrane into susceptible cells, was excreted like the wild-type cloacin DF13. The composition of the culture medium greatly affected production of cloacin DF13. The presence of sugars known to cause catabolite repression not only inhibited the production but also strongly reduced the excretion of cloacin DF13 into the culture medium.  相似文献   

11.
12.
Summary The synthesis of the bacteriocin cloacin DF13 and its release into the culture medium were genetically uncoupled by subcloning the gene encoding the bacteriocin release protein (BRP) from pCloDF13. The gene was cloned under the control of the IPTG-inducible lpp-lac promoter-operator system on the expression vector pINIIIA1, giving pJL1. A 4 kb DNA fragment of pJL1, containing the tandem lpp-lac promoter, the BRP gene and lacI (BRP cassette), was cloned into the pCloDF13 derivative plasmid pJN67, which encodes cloacin DF13 but not the release protein. Furthermore, the pCloDF13 immunity protein gene was subcloned downstream of the temperature-inducible P L promoter of the expression vector pPLc236, together with the BRP cassette. Growth, induction and excretion experiments with Escherichia coli cells harbouring the constructed plasmids revealed that: i) the BRP is the only pCloDF13-derived gene product responsible for the observed growth inhibition and apparent lysis of strongly induced cells. This growth inhibition and lysis can be prevented by Mg2+ ions added to the culture medium, and involves induction of phospholipase A activity. (ii) The expression of the BRP gene can be regulated by varying the IPTG concentration. (iii) A separately controlled and moderate induced BRP synthesis can be used to bring about the release of large amounts of cloacin DF13 under conditions that allow a strong induction of the bacteriocin and which do not result in lysis of cells. (iiii) Preliminary results indicated that the BRP can stimulate the release of immunity protein in the absence of cloacin or cloacin fragments.  相似文献   

13.
Abstract The plasmids CloDF13-clp03 and CloDF13-clp21, obtained after nitrosoguanidine mutagenesis of pCloDF13 (Andreoli, P.M. and Nijkamp, H.J.J. (1976) Mol. Gen. Genet. 144, 159–170), encode mutant bacteriocin molecules with a reduced ability to penetrate susceptible cells (Gaastra, W., Oudega, B. and De Graaf, F.K. (1978) Biochim. Biophys. Acta 540, 301–312). DNA sequence analysis revealed that both the genes encoding the mutant bacteriocin molecules had a point-mutation which resulted in the replacement of proline54 by serine in the amino-terminal domain of the cloacin, involved in translocation. This alteration had no detectable effect on the predicted secondary structure of the proteins or on the interaction with various monoclonal antibodies. Susceptible cells with a relatively low number of receptor proteins were not killed by the bacteriocins or were less susceptible, but Escherichia coli cells with a relatively high number of efficient and functional receptor proteins were efficiently killed. Immunoblotting experiments with the latter type of cells showed that cloacin-clp03, like native cloacin DF13, was fragmented during uptake by the cells, but at a somewhat slower rate.  相似文献   

14.
Abstract The pCloDF1S encoded bacteriocin release protein (BRP) plays a role in the release of the bacteriocin cloacin DF13. The BRP signal peptide is stable after cleavage, and accumulates in the cytoplasmic membrane. A BRP which is correctly targeted by the unstable murein lipoprotein signal peptide (Lpp-BRP) is not capable of inducing the release of cloacin DF13. To investigate the role of the stable BRP signal peptide in the release of cloacin DF13, the stable BRP signal peptide and the Lpp-BRP were expressed in trans in cells also producing cloacin DF13. Expression and release experiments indicate that the stable signal peptide can complement the Lpp-BRP in the release of cloacin DF13.  相似文献   

15.
After nitrosoguanidine mutagenesis, strain Escherichia coli P678-54, bacteriocinogenic for Clo DF13, yielded a mutant strain that showed an enhanced bacteriocin production. The results from conjugation experiments indicated that the mutation, responsible for the enhanced bacteriocin production, is located on the Clo DF13 plasmid. The following properties of strains harboring the mutant Clo DF13 plasmid could be observed. (i) The bacteriocin production in these strains can be further enhanced at least fourfold by mitomycin C. (ii) The fraction of spontaneously induced cells, as revealed by lacunae experiments, in cultures of these strains is about nine times higher than in cultures of wild-type Clo DF13-harboring strains. (iii) Chromosomeless minicells from strain P678-54 harboring the mutant Clo DF13 plasmid synthesize about six times more deoxyribonucleic acid, ribonucleic acid, and protein as compared to wild-type Clo DF13-harboring minicells. (iv) Analysis of this mutant Clo DF13-specific ribonucleic acid and protein on polyacrylamide gels revealed mainly the same ribonucleic acid and polypeptide species as synthesized by the wild-type Clo DF13 minicells, but in larger amounts (Kool et al., 1974). (v) Segregation experiments, using a strain with temperature-sensitive polymerase I, show that mutant Clo DF13-harboring cells contain an average of 70 Clo DF13 copies per cell, whereas wild-type Clo DF13-harboring cells contain only about 10 Clo DF13 copies per cell. The data presented in this paper indicate that the mutation on the Clo DF13 plasmid leads to an altered control of Clo DF13 replication and results in an enhanced number of Clo DF13 copies per cell. As a secondary effect, this enhanced number of Clo DF13 copies enhances the probability of "spontaneous" induction per cell. Since the mutation is plasmid specific and affects the number of plasmid copies produced, one can conclude that the Clo DF13 plasmid is not dependent solely on chromosomal information, but that at least plasmid base sequences are involved in Clo DF13 plasmid replication.  相似文献   

16.
Summary We studied the expression of gene H, located between 9.3% and 11% on the Clo DF13 genome, as well as the functions of the gene product. We found that treatment of bacterial cells with mitomycin-C results in the induced synthesis of three Clo DF13 specified proteins namely cloacin DF13, immunity protein and protein H. Evidence was obtained that the genes encoding these proteins form one, mitomycin-C induceable, operon; the promoter at 32% in front of the cloacin gene is essential for the induced expression. Furthermore we could demonstrate that protein H is involved in the lethal effect of mitomycin-C treatment of bacteriocinogenic cells. The data in this paper show that a high concentration of protein H in cells, due either to an induced expression of gene H (mitomycin-C induction) or to a gene dosage effect (Clo DF13 cop1 Ts copy control mutant), results in the lysis of bacterial cells. The implication of these data are discussed.  相似文献   

17.
Induction of cloacin DF13 synthesis in Escherichia coli harbouring plasmid CloDF13 results in the release of cloacin DF13, inhibition of growth and ultimately in lysis of the host cells. Expression of the pCloDF13-encoded protein H is essential for both the release of cloacin DF13 and the lysis of the cells. The divalent cations Mg2+ and Ca2+ interfered with the mitomycin C-induced protein H-dependent lysis, but hardly affected the release of cloacin DF13. Essentially all of the bacteriocin was released from the cells before a detectable degradation of the peptidoglycan occurred, independent of the presence of mitomycin C. Experiments with phospholipase A mutants revealed that activation of detergent-resistant phospholipase A was essential for the export of cloacin DF13 across the outer membrane and the lysis of induced cells. Transport of cloacin DF13 across the cytoplasmic membrane was mainly dependent on protein H. A revised model for the excretion of cloacin DF13 is presented.  相似文献   

18.
The pCloDF13-encoded bacteriocin release protein (BRP) is a lipoprotein which is synthesized as a precursor with an amino-terminal signal peptide that appears to be stable after cleavage. The role of the stable signal peptide in the functioning of the BRP was studied with respect to the release of cloacin DF13, 'lysis' and leakage of periplasmic proteins. The BRP gene fragment encoding the stable signal peptide was replaced by a fragment encoding the unstable peptide of the murein lipoprotein (Lpp). The resulting hybrid protein was normally acylated and processed by signal peptidase II, leaving no stable signal peptide in the cells. Expression of the hybrid protein did not result in the specific release of cloacin DF13, whereas 'lysis' and the release of periplasmic enzymes were unaffected. These results indicated a role for the stable BRP signal peptide in the translocation of cloacin DF13 across the cytoplasmic membrane.  相似文献   

19.
The pCloDF13-encoded bacteriocin release protein (BRP; Mr 2,871) is essential for the translocation of cloacin DF13 across the cell envelope of producing Escherichia coli cells. Overproduction of this BRP provokes lysis (quasilysis) of cells. Construction and analysis of a hybrid BRP-beta-lactamase protein (BRP-Bla) demonstrated that the BRP contains a lipid modified cysteine residue at its amino terminus and is mainly located in the outer membrane. The significance of lipid modification for the localization and functioning of the BRP was investigated. Site-directed mutagenesis was used to substitute the cysteine residue for a glycine residue in the lipobox of the BRP and the BRP-Bla protein. The mutated BRP was unable to bring about the release of cloacin DF13 and could not provide the lysis (quasilysis) of host cells. However, the mutated BRP strongly inhibited the colony-forming ability of the cells, indicating that induction of the mutated protein still affected cell viability. In contrast to the wild-type BRP-Bla protein, the mutated BRP-Bla protein was mainly located in the cytoplasmic membrane, indicating that the mutation prevented the proper localization of the protein. The results indicated that lipid modification of the BRP is required for its localization and release of cloacin DF13, but not for its lethality to host cells.  相似文献   

20.
Comparison of the circular dichroism (CD), of cloacin-immunity protein complex with that of cloacin and of a mutant cloacin lacking the ability to bind immunity protein, shows that the binding of immunity protein imposes a definite structure on the cloacin molecule. It is discussed that this structure probably is a prerequisite for an effective killing activity of the bacteriocin. The cloacin molecule itself probably has two domains, as was found by limited proteolysis. Comparison of the structure of two of the proteolytic fragments with that of the intact molecule by means of circular dichroism also suggests that cloacin is made up of a part without much periodic structure and of a part with more helicity. The former part being rather sensitive to proteolysis, the latter being comparatively insensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号