首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
4.
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.  相似文献   

5.
6.
7.
8.
We have identified a rice gene encoding a DNA-binding protein that specifically recognizes the telomeric repeat sequence TTTAGGG found in plants. This gene, which we refer to as RTBP1 (rice telomere-binding protein 1), encodes a polypeptide with a predicted molecular mass of 70 kDa. RTBP1 is ubiquitously expressed in various organs and binds DNA with two or more duplex TTTAGGG repeats. The predicted protein sequence includes a single domain at the C terminus with extensive homology to Myb-like DNA binding motif. The Myb-like domain of RTBP1 is very closely related to that of other telomere-binding proteins, including TRF1, TRF2, Taz1p, and Tbf1p, indicating that DNA-binding domains of telomere-binding proteins are well conserved among evolutionarily distant species. To obtain precise information on the sequence of the DNA binding site recognized by RTBP1, we analyzed the sequence-specific binding properties of the isolated Myb-like domain of RTBP1. The isolated Myb-like domain was capable of sequence-specific DNA binding as a homodimer. Gel retardation analysis with a series of mutated telomere probes revealed that the internal GGGTTT sequence in the two-telomere repeats is critical for binding of Myb-like domain of RTBP1, which is consistent with the model of the TRF1.DNA complex showing that base-specific contacts are made within the sequence GGGTTA. To the best of our knowledge, RTBP1 is the first cloned gene in which the product is able to bind double-stranded telomeric DNA in plants. Because the Myb-like domain appears to be a significant motif for a large class of proteins that bind the duplex telomeric DNA, RTBP1 may play important roles in plant telomere function in vivo.  相似文献   

9.
DnaA protein binds specifically to a group of binding sites collectively called as DnaA boxes within the bacterial replication origin to induce local unwinding of duplex DNA. The DNA-binding domain of DnaA, domain IV, comprises the C-terminal 94 amino acid residues of the protein. We overproduced and purified a protein containing only this domain plus a methionine residue. This protein was stable as a monomer and maintained DnaA box-specific binding activity. We then analyzed its solution structure by CD spectrum and heteronuclear multi-dimensional NMR experiments. We established extensive assignments of the 1H, 13C, and 15N nuclei, and revealed by obtaining combined analyses of chemical shift index and NOE connectivities that DnaA domain IV contains six alpha-helices and no beta-sheets, consistent with results of CD analysis. Mutations known to reduce DnaA box-binding activity were specifically located in or near two of the alpha-helices. These findings indicate that the DNA-binding fold of DnaA domain IV is unique among origin-binding proteins.  相似文献   

10.
11.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

12.
13.
14.
15.
The vitamin D receptor (VDR) is a member of the steroid receptor gene family. In this report, we examine the nature of specific VDR DNA binding utilizing the vitamin D-responsive element derived from the human osteocalcin promoter. Association of the VDR with the human osteocalcin 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) responsive element (VDRE) in vitro was characterized on VDRE affinity columns by both weak and strong interactions. Weak interaction was a property of the VDR itself, monomeric in nature, and determined exclusively by the VDR's DNA-binding domain. Strong interaction, in contrast, was dependent upon an intact receptor molecule as well as a heterologous mammalian cell nuclear accessory factor (NAF). Heteromeric interaction between VDR and NAF was independent of the VDR DNA-binding domain, suggesting the presence of a functional dimerization domain separate from that for DNA binding. Direct association of NAF with immobilized VDR revealed that the interaction does not require the presence of DNA. Most importantly, while occupancy of the VDR by 1,25(OH)2D3 was not required for VDR interactions with either DNA or NAF, the presence of hormone increased the apparent relative affinity of the VDR for NAF approximately 10-fold. These studies suggest that high affinity association of the VDR with DNA requires both the DNA-binding domain as well as an additional independent structure located within the steroid-binding region. This protein subdomain interacts with NAF and is regulated by 1,25(OH)2D3.  相似文献   

16.
The Epstein-Barr virus nuclear antigen EBNA-1 is essential for replication of the viral DNA during latency. EBNA-1 binds as a dimer to palindromic recognition sequences within the plasmid origin of replication, ori-P. In this study, proteinase K susceptibility has been used to further characterize the DNA-binding domain of EBNA-1. Limited protease digestion of EBNA-1 (amino acids 408 to 641) generated a smaller DNA-binding species that had a degree of inherent protease resistance. When EBNA-1 was preincubated with a specific DNA probe, the protease resistance of the smaller binding species increased 100-fold, suggesting that the conformation of EBNA-1 changes on binding. The protease-resistant species comprised an 18-kDa polypeptide that was further cleaved at high levels of protease to 11- and 5.4-kDa products. A model of the proposed protease-resistant domain structure is presented. Constructions carrying serial, internal deletions across the 18-kDa domain were created. Each of the deletions perturbed dimerization ability and abolished DNA binding. These studies suggest that the DNA-binding and dimerization motifs of EBNA-1 lie within a conformationally discrete domain whose overall integrity is necessary for EBNA-1-DNA interaction.  相似文献   

17.
18.
19.
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.  相似文献   

20.
Initiator proteins are critical components of the DNA replication machinery and mark the site of initiation. This activity probably requires highly selective DNA binding; however, many initiators display modest specificity in vitro. We demonstrate that low specificity of the papillomavirus E1 initiator results from the presence of a non-specific DNA-binding activity, involved in melting, which masks the specificity intrinsic to the E1 DNA-binding domain. The viral factor E2 restores specificity through a physical interaction with E1 that suppresses non-specific binding. We propose that this arrangement, where one DNA-binding activity tethers the initiator to ori while another alters DNA structure, is a characteristic of other viral and cellular initiator proteins. This arrangement would provide an explanation for the low selectivity observed for DNA binding by initiator proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号