首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
BACKGROUND: We sought to identify genes with altered expression during human breast cancer progression by applying mRNA comparisons of normal and tumor mammary cell lines with increasingly malignant phenotypes. The gene encoding a new sialyltransferase (STM) was found to be down-regulated in tumor cells. Abnormal expression and enzymatic activities of sialyltransferases in tumor cells result in the formation of tumor-associated carbohydrate antigens that can be used for the better understanding of the disease process and are applied for tumor diagnosis and immunotherapy. Altered glycosylation patterns of the MUC1 mucin, in particular, is a target antigen for immunotherapy of breast and other cancers. MATERIALS AND METHODS: Total RNAs from multiple normal mammary epithelial cell strains and tumor cell lines were compared by differential display and the differential expression of selected cDNAs was confirmed by Northern analyses. Recombinant STM was expressed in COS-7 cells. The substrate and linkage specificity of STM was examined using various oligosaccharides and O-glycosylated proteins as acceptor substrates. The chromosomal localization of the SIATL1 gene was assigned by somatic cell hybrid analysis. RESULTS: A human sialyltransferase gene was identified by differential display as being down-regulated in breast tumor cell lines as compared to normal mammary epithelial cell strains, and the corresponding full-length cDNA (stm) was cloned. The encoded protein of 374 amino acid residues contained the L- and S-sialylmotifs, two catalytic regions conserved in all functional sialyltransferases. Recombinant STM is an active GalNAc alpha2,6-sialyltransferase with Gal beta 1,3 GalNAc-O-Ser/Thr and (+/- Neu5Ac alpha 2,3) Gal beta 1,3GalNAc-O-Ser/Thr acceptor specificity. The SIATL1 gene, encoding STM, was mapped to the long arm of human chromosome 17 at q23-qter, a region that is nonrandomly deleted in human breast cancers. However, Southern analyses indicated that SIATL1 is usually not grossly rearranged in breast tumors. Northern analyses showed that the gene was widely expressed in normal human tissues, as well as in normal breast and prostate epithelial cell lines, but significantly down-regulated or absent in corresponding tumor cell lines. CONCLUSIONS: Our findings suggest that aberrant expression of STM sialyltransferase in tumors could be a feature of the malignant phenotype. In breast cancers, the MUC1 mucin is overexpressed and contains shorter O-glycans as compared to the normal mucin. Because STM catalyzes the synthesis of O-glycans, cloning and characterization of its substrate specificity will contribute to the understanding of the molecular mechanisms underlying the aberrant glycosylation patterns of O-glycans and the formation of mucin-related antigens in human breast cancers.  相似文献   

10.
NH2-terminal amino acid sequence of the pS2 protein produced and secreted by human gastric cancer cells, MKN-45, was determined to be identical to that of MCF-7 cells. A clone encoding pS2 protein was isolated from the cDNA library constructed from MKN-45 cells. The nucleotide sequence was identical to that of pS2 cDNA previously isolated from human breast cancer cells, MCF-7, except for one nucleotide in the 3' untranslated region. Thus, in this cell line, the pS2 gene product is translated and secreted as in MCF-7 cells. RNA blot hybridization analysis revealed that pS2 gene was expressed well in two (MKN-45 and KATO-III; derived from poorly differentiated adenocarcinoma) but not in three cell lines (MKN-1, MKN-28 and MKN-74; from well differentiated adenocarcinoma), suggesting that expression of the pS2 gene depends on the state of cell differentiation. These results suggest that pS2 is expressed in human gastric cancer cells in an estrogen-independent manner and is possibly associated with the malignant state of cells.  相似文献   

11.
Geminin is a potent inhibitor of origin assembly and re-replication in multicellular eukaryotes and is a negative regulator of DNA replication during the cell cycle. Thus, it was proposed as an inhibitor of cell proliferation and as a potential tumor suppressor gene. However, the protein was found specifically expressed in proliferating lymphocytes and epithelial cells and up-regulated in several malignancies. Therefore, geminin is now regarded as an oncogene but its role in tumor development remains unknown. In this study, we evaluated by Western blot analysis the expression of geminin in a series of human cancer cell lines of various histogenetic origin and in a series of human primary colon, rectal, and breast cancers. Expression of geminin was variable in different cell lines and not related to the expression level of the corresponding mRNA. Moreover, geminin was expressed at higher level in 56% and 58% of colon and rectal cancers, respectively, compared with the corresponding adjacent normal mucosa. A high expression of geminin was also detected by immunohistochemistry in 60% of human primary breast cancers. We also transfected a full-length geminin cDNA in a human non-tumorigenic and a cancer breast cell lines and obtained derivatives expressing high levels of the protein. Geminin overexpression stimulated cell cycle progression and proliferation in both normal and cancer cells and increased the anchorage--independent growth of breast cancer cells. These results demonstrate that expression of geminin is frequently deregulated in tumor cells and might play an important role in the regulation of cell growth in both normal and malignant cells.  相似文献   

12.
13.
Identification and characterization of a novel cancer/testis antigen gene CAGE   总被引:10,自引:0,他引:10  
We applied serological analysis of cDNA expression library technique to identify cancer-associated genes. We screened cDNA expression libraries of human testis and gastric cancer cell lines with sera of patients with gastric cancers. We identified a gene whose expression is testis-specific among normal tissues. We cloned and characterized this novel gene. It contains D-E-A-D box domain and encodes a putative protein of 630 amino acids with possible helicase activity. It showed wide expression in various cancer tissues and cancer cell lines. The corresponding gene was named cancer-associated gene (CAGE). PCR of human x hamster Radiation Hybrids showed localization of CAGE on the human chromosome Xp22. Transient transfection of CAGE showed predominantly nuclear localization. Both Western blot and plaque assay indicated seroreactivity of CAGE protein. We found that demethylation played a role in the activation of CAGE in some cancer cell lines that do not express it. Cell synchronization experiments showed that the expression of CAGE was related with cell cycle. This suggests that CAGE might play a role in cellular proliferation. Because CAGE is expressed in a variety of cancers but not in normal tissues except testis, this gene can be a target of antitumor immunotherapy.  相似文献   

14.
15.
16.
Two cDNA clones coding for Zn-alpha 2-glycoprotein (Zn-alpha 2-gp) have been isolated from a human breast library and their nucleotide sequences determined. The deduced amino acid sequence contains the coding information for a hydrophobic signal peptide and the 278 residues of the mature protein. Comparison of this sequence with that from the protein purified from plasma reveals four differences: two amino acid changes (Gln-67 and Glu-222) and insertion of two residues (Ile-75 and Phe-76). Northern-blot analysis showed that the Zn-alpha 2-gp gene is expressed in liver and normal breast, but not in placenta, ovary and thyroid. A comparative analysis in mammary tissues from women with different diseases revealed enhanced expression of Zn-alpha 2-gp gene in benign breast lesions and a variable expression level in breast cancers.  相似文献   

17.
18.
BACKGROUND: The human maspin gene encodes a protein in the serine proteinase inhibitor (serpin) family with tumor-suppressing functions in cell culture and in nude mice. In order to examine the role of maspin in an intact mammal, we cloned and sequenced the cDNA of mouse maspin. The recombinant protein was produced and its activity in cell culture was assessed. MATERIALS AND METHODS: Mouse maspin (mMaspin) was cloned by screening a mouse mammary gland cDNA library with the human maspin cDNA probe. Northern blot analysis was used to examine the expression patterns in mouse tissues, mammary epithelial cells, and carcinomas. Recombinant mMaspin protein was produced in E. coli. Invasion and motility assays were used to assess the biological function of mMaspin. RESULTS: mMaspin is 89% homologous with human maspin at the amino acid level. Like its human homolog, mMaspin is expressed in normal mouse mammary epithelial cells and down-regulated in mouse breast tumor cell lines. The expression is altered at different developmental stages in mammary gland. Addition of the recombinant mMaspin protein to mouse tumor cells was shown to inhibit invasion in a dose-dependent manner. As with the human protein, recombinant mMaspin protein also inhibited mouse mammary tumor motility. Deletion in the putative mMaspin reactive site loop (RSL) region resulted in the loss of its inhibitory functions. CONCLUSIONS: mMaspin is the mouse homolog of a human tumor suppressor gene. The expression of mMaspin is down-regulated in tumor cells and is altered at different developmental stages of mammary gland. mMaspin has inhibitory properties similar to those of human maspin in cell culture, suggesting that the homologous proteins play similar physiological roles in vivo.  相似文献   

19.
20.
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号