首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aromatase enzyme and its inhibition by R 76 713 were characterized in the JEG-3 choriocarcinoma cell line in culture and in JEG-3 tumors grown in nude mice. Optimal cell culture parameters and enzyme reaction conditions for the determination of aromatase activity were established. Under these conditions, in vitro JEG-3 aromatase was inhibited by R 76 713 with IC50-values of 7.6 +/- 0.5 nM and 2.7 +/- 1.1 nM using 500 nM of androstenedione and testosterone as substrate respectively. The Km-value of the aromatase enzyme with androstenedione as substrate was 62 +/- 19 nM; with testosterone as substrate, a value of 166 +/- 27 nM was found. In the presence of increasing concentrations of R 76 713, the Km-values increased while the Vmax remained unchanged. Using androstenedione and testosterone as substrate Lineweaver-Burk analysis of the data showed Ki-values for R 76 713 of 0.43 +/- 0.06 nM and 0.47 +/- 0.39 nM respectively. R 76 713 appeared to competitively inhibit the JEG-3 aromatase. Aromatase could easily be measured in homogenates of JEG-3 tumors grown in nude mice and showed Km-values similar to those found for JEG-3 cells in vitro. IC50-values for inhibition of tumor aromatase by R 76 713 were also similar to those found in cultured cells. Tumor aromatase measured ex vivo, 2 h after a single oral administration of R 76 713 was dose-dependently inhibited. An ED50-value of 0.05 mg/kg was calculated. The JEG-3 choriocarcinoma proved to be a useful aromatase model enabling the comparative study of aromatase inhibition in vitro and in vivo.  相似文献   

2.
Lipogenesis from different substrates was determined in isolated human sebaceous glands after 17-20 h in culture. Rates of total lipogenesis were 1003 +/- 141, 842 +/- 90, 481 +/- 57 pmol.h-1 gland-1 +/- SE from acetate, lactate and glucose, respectively, when present as sole substrates: the rate from glucose was significantly lower (P less than 0.01). Squalene synthesis was greatest from acetate at 479 +/- 44 pmol.h-1.gland-1; significantly higher than from lactate (281 +/- 45 pmol.h-1.gland-1) or glucose at 119 +/- 18 pmol.h-1.gland-1. Wax ester plus cholesterol ester synthesis showed similar dependence on substrate but triglyceride synthesis was unaffected. We conclude that the added substrate determines both the rate and pattern of non-polar lipid synthesized by isolated human sebaceous glands.  相似文献   

3.
Inhibition kinetics of phenol degradation from unstable steady-state data   总被引:4,自引:0,他引:4  
Multiplicity of steady states of a continuous culture with an inhibitory substrate was used to estimate kinetic parameters under steady-state conditions. A continuous culture of Pseudomonas cepacia G4, using phenol as the sole source of carbon and energy, was overloaded by increasing the dilution rate above the critical dilution rate. The culture was then stabilized in the inhibitory branch by a proportional controller using the carbon dioxide concentration in the reactor exhaust gas as the controlled variable and the dilution rate as the manipulated variable. By variation of the set point, several unstable steady states in the inhibitory branch were investigated and the specific phenol conversion rates calculated. In addition, phenol degradation was investigated under substrate limitation (chemostat operation).The results show that the phenol degradation by P. cepacia can be described by the same set of inhibition parameters under substrate limitation and under high substrate concentrations in the inhibitory branch. Biomass yield and maintenance coefficients were identical. Fitting of the data to various inhibition models resulted in the best fit for the Yano and Koga equation. The well-known Haldane model, which is most often used to describe substrate inhibition by phenol, gave the poorest fit. The described method allows a precise data estimation under steady-state conditions from the maximum of the biological reaction rate up to high substrate concentrations in the inhibitory branch. Inhibition parameter estimation by controlling unstable steady states may thus be useful in avoiding discrepancies between data generated by batch runs and their application to continuous cultures which have been often described in the literature. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 567-576, 1997.  相似文献   

4.
Spin-echo NMR spectroscopy was shown to be a reliable technique for the monitoring of the in situ cleavage of gamma-Glu-Ala by gamma-glutamyl-amino acid cyclotransferase in whole erythrocytes and hemolysates. Of particular importance was the difference in chemical shifts between peptide resonances and those of the constituent amino acids. Using lysates of varying dilution, it was shown that the specific activity of the enzyme was not concentration-dependent, thus suggesting a lack of cytosolic low-molecular-weight-effectors or enzyme dissociation. Furthermore, the initial velocities of the reaction as a function of substrate concentration obeyed Michaelis-Menten kinetics with a Km = 2.0 +/- 0.3 mmol/l and Vmax = 137 +/- 7 mmol/h/l of cell water in 1H2O medium. Similar analysis in 2H2O medium revealed a solvent kinetic isotope effect of 1.9 +/- 0.4 at low substrate concentrations. The implications of this observation for the mechanism of the reaction are discussed. Cleavage of the peptide by a suspension of intact erythrocytes was at a rate 300 times less than the corresponding lysate flux, thus indicating the rate limitation by transport in the coupled system.  相似文献   

5.
Basic issues in the culture of the extremely thermophilic archaeon, Methanothermus fervidus, have been investigated, including culture medium formulation, substrate yield and product yield coefficient, growth rate and stoichiometry, and H(2) uptake kinetics. The pH optimum for growth of this organism was estimated at 6.9. Growth medium buffered with PIPES instead of bicarbonate supported both increased growth rate and maximum biomass concentration. Substitution of titanium(III) citrate for the reducing agent sodium sulfide improved culture performance as well. However, independent adjustment of iron and nickel concentrations from 11 to 111 muM, respectively, and carbon dioxide partial pressure from 5 to 20 psia did not impact the culture of M. fervidus significantly. An elemental balance approach was utilized to aid in design of a defined medium to support growth to a target maximum biomass concentration of at least 1.0 g dry wt/L. The growth of this organism was limited by H(2) availability in this reformulated culture medium. The maximum growth rate and biomass concentration achieved in anaerobic vials with the defined medium was 0.16 h(-1) and 0.74 g dry wt/L, respectively. This maximum biomass concentration was a 72% improvement over that obtained with a literature-based defined medium. The Monod parameter, K(s), with H(2) as limiting substrate, was estimated at 1.1 +/- 0.4 psia (55 +/- 20 muM in the broth), based on a H(2) consumption study. Representative values for the substrate yield, Y(X/CO(2) ), and product yield coefficient, Y(CH(4)/) (X), were determined experimentally to be 1.78 +/- 0.04 g dry wt/mol CO(2), and 0.52 +/- 0.01 mol CH(4)/g dry wt, respectively. A bench-scale fermentation system suitable for the culture of extremely thermophilic anaerobes was designed and constructed and proved effective for the culture of M. fervidus. (c) 1993 Wiley & Sons, Inc.  相似文献   

6.
The marine bacterium Saccharophagus degradans was investigated for the synthesis of polyhydroxyalkanoates (PHAs), using glucose as the sole source of carbon in a two-step batch culture. In the first step the microorganism grew under nutrient balanced conditions; in the second step the cells were cultivated under limitation of nitrogen source. The biopolymer accumulated in S. degradans cells was detected by Nile red staining and FT-IR analysis. From GC-MS analysis, it was found that this strain produced a homopolymer of 3-hydroxybutyric acid. The cellular polymer concentration, its molecular mass, glass transition temperature, melting point and heat of fusion were 17.2+/-2.7% of dry cell weight, 54.2+/-0.6 kDa, 37.4+/-6.0 degrees C, 165.6+/-5.5 degrees C and 59.6+/-2.2 J g(-1), respectively. This work is the first report determining the capacity of S. degradans to synthesize PHAs.  相似文献   

7.
This paper reports the production of very high levels of cellulase free xylanase and associated hemicellulases by an indigenous thermophilic isolate of Thermomyces lanuginosus (D(2)W(3)) using solid-state fermentation. Sorghum straw, an inexpensive and abundant source of carbon supported maximal xylanase activity (11,855 units/g dry substrate). Culturing T. lanuginosus D(2)W(3) on sorghum straw and optimizing other culture conditions (media types, particle size of carbon source, inoculum level, inoculum age and additives), yielded increased levels of xylanase (39,726 units/g dry substrate). Further optimization of enzyme production was carried out using Box-Behnken design of experiments with three independent variables (inoculum level, glycerol and ammonium sulphate concentrations) which resulted in very high levels of xylanase, 48,000+/-1774 units/g dry substrate, and 2.6+/-0.2, 13.4+/-0.56, 68+/-1.7, 1.4+/-0.08, 1.2+/-0.05 (units/g dry substrate) of beta-xylosidase, alpha-galactosidase, pectinase, beta-mannosidase and alpha-L-arabinofuranosidase, respectively.  相似文献   

8.
During heterotrophic growth on acetate, in batch culture, the autotrophic growth potential of Thiobacillus A2, i.e. the capacity to oxidize thiosulfate and to fix carbon dioxide via the Calvin cycle, was completely repressed. The presence of thiosulfate in a batch culture with acetate as the organic substrate partly released the repression of the thiosulfate oxidizing system. Cultivation of the organism in continuous culture at a dilution rate of 0.05 h-1 with different concentration ratios of thiosulfate and acetate in the reservoir medium led to mixotrophic growth under dual substrate limitation. Growth on the different mixtures of acetate and thiosulfate yielded upto 30% more cell dry weight than predicted from the growth yields on comparable amounts of these substrates separately. The extent to which the carbon dioxide fixation capacity and the maximum thiosulfate and acetate oxidation capacity are repressed appeared to be a function of the thiosulfate to acetate concentration ratio in the reservoir medium. The results of 14C-acetate assimilation experiments and of gas-analysis demonstrated that the extent to which acetate was assimilated depended also on the substrate ratio in the inflowing medium. Under the different growth conditions surprisingly little variation was found in some tri-carboxylic acid cycle enzyme activities. Cultivation of T. A2 at different growth rates with a fixed mixture of thiosulfate (18 mM) and acetate (11 mM) in the medium, showed that dual substrate limitation occured at dilution rates ranging from 0.03–0.20 h-1.Abbreviations PPO 2,5-diphenoloxazol - RubPCase Ribulose-1,5-bisphophate carboxylase - Tris tris (hydroxymethyl) aminomethane - EDTA ethylenediaminetetra-acetic acid  相似文献   

9.
Pruden A  Suidan M 《Biodegradation》2004,15(4):213-227
The effect of a BTEX mixture on the biodegradation of methyl tert-butyl ether (MTBE) and its degradation intermediate, tert-butyl alcohol (TBA) was investigated in the pure bacterial culture UC1, which has been identified to be a strain of the known MTBE-degrader PM1 based on greater than 99% 16S rDNA similarity. Several degradation studies were carried out on UC1 at three initial concentration levels of MTBE or TBA: 6-7; 15-17; and 40-45 mg/l, both with and without BTEX present cumulatively at about half of the MTBE or TBA molar mass in the system. The BTEX mixture was observed not to affect either the rate or the degradation lag period of MTBE or TBA degradation, except that the TBA degradation rate actually increased when BTEX was present initially in the highest concentration studies. When serving as the sole substrate, the MTBE degradation rate ranged from 48 +/- 1.2 to 200 +/- 7.0 mg(MTBE)/g(dw) h, and the TBA degradation rate from 140 +/- 18 to 530 +/- 70 mg(TBA)/g(dw) h. When present with BTEX, MTBE and TBA rates ranged from 46 +/- 2.2 to 210 +/- 14 and 170 +/- 28 to 780 +/- 43 mg(TBA)/g(dw) h, respectively. In studies where varying concentrations of TBA were present with 5 mg/l MTBE, both compounds were degraded simultaneously with no obvious preference for either substrate. In the highest concentration study of TBA with 5 mg/l MTBE, BTEX was also observed to increase the ultimate rate of TBA degradation. In addition to exploring the affect of BTEX, this study also provides general insight into the metabolism of MTBE and TBA by pure culture UC1.  相似文献   

10.
Microbial production of 2,3-butanediol by Klebsiella oxytoca occurs under conditions of an oxygen limitation. The extent to which substrate is oxidized to 2,3-butanediol and its coproducts, (acetic acid, acetoin, and ethanol) and the relative flow rates of substrate to energetic and biosynthetic pathways are controlled by the degree of oxygen limitation. Two energetic relationships which describe the response to an oxygen limitation have been derived. The first relationship describes the coupling between growth and energy production observed under oxygen-limited conditions. This allows calculation of energetic parameters and modeling of the cell mass and substrate profiles in terms of the degree of oxygen limitation only. The second relationship describes the average degree of oxidation and the rate of the end-product flow. The model has been tested with both batch and continuous culture. During these kinetic studies, two phases of growth have been observed: energy-coupled growth, which was described above; and, energy-uncoupled growth, which arises when the degree of oxygen limitation reaches a critical value. Optimal culture performance with respect to 2,3-butanediol productivity occurs during energy-coupled growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
1. A study was made of the composition and structure of walls isolated from yeast grown in continuous culture at different rates, under three conditions of glucose limitation in which the concentrations of glucose and ammonium sulphate in the medium and the oxygen-transfer rate in the culture were varied, and one condition of NH(4) (+) limitation. 2. The contents of total glucan and total mannan in the walls were relatively little affected by the growth rate under any of the four sets of conditions. The phosphorus and protein contents of walls from yeast grown under each of the four conditions increased as the growth rate was decreased. Walls from yeast grown under NH(4) (+) limitation contained only half as much protein as walls from cells grown under glucose limitation. The proportion of lipid was greatest in walls from yeast grown under NH(4) (+) limitation. 3. A procedure was devised for fractionating isolated walls, based on the ease with which the glucan and mannan were extracted with water and with hot and cold 6% (w/v) potassium hydroxide solution. The percentage of glucan, mannan, protein and phosphorus in each of the fractions was affected by the rate of growth and by the nature of the substrate limitation. 4. The beta-fructofuranosidase activities of yeast grown under glucose limitation increased as the growth rate was lowered, but decreased at very low growth rates. The effects at low growth rates were probably due to repression of enzyme synthesis by residual glucose in the culture filtrate. The beta-fructofuranosidase activities of yeast grown under NH(4) (+) limitation were much lower than those from yeast grown under any of the conditions of glucose limitation. 5. Yeast cells grown at any of the rates under NH(4) (+) limitation were longer and thinner than those grown at the same rate under any of the conditions of glucose limitation. Mean cell volumes were dependent on growth rate but not on the nature of the substrate limitation. 6. Electron micrographs of thin sections of isolated walls showed that cells grown under NH(4) (+) limitation had a more porous structure than those from cells grown under any of the conditions of glucose limitation.  相似文献   

12.
Thermoanaerobacter thermosaccharolyticum HG-8 was grown in continuous culture to characterize growth limitation at high feed substrate and product concentrations. Continuous fermentation of 50 and 73 g/L xylose at a dilution rate based on the feed flow, D(f), of 0.053 h(-)(1) and with the pH controlled at 7.0 by addition of KOH resulted in steady state utilization of >99% of the xylose fed and production of ethanol and acetic acid at a mass ratio of about 2:1. Continuous cultures of T. thermosaccharolyticum growing at D(f) = 0.053 h(-)(1) achieved complete utilization of 75 g/L xylose in the presence of 19.1 g/L K(+) (0.49 M) and an ethanol concentration of 22.4 g/L ethanol. When the feed to a culture initially at steady state with a 75 g/L xylose feed and D(f) = 0.053 h(-)(1) was increased to 87.5 g/L xylose, limitation of growth and xylose utilization was observed. This limitation was not relieved by repeating this feed upshift experiment in the presence of increased nutrient levels and was not reproduced by addition of ethanol to a steady-state culture fed with 75 g/L xylose. By contrast, addition of KCl to a steady-state culture fed with 75 g/L xylose reproduced the K(+) concentration, limitation of growth and xylose utilization, and product concentration profiles observed in the feed upshift experiment. The maximum concentration at which growth of batch cultures was observed was 0.43 M for KCl, NaCl, and equimolar mixtures of these salts, suggesting that the observed limitation is not ion-specific. These data support the interpretation that inhibition salt accumulation resulting from addition of KOH for pH control is the limiting factor manifested in the feed upshift experiment and that both nutrient limitation and ethanol inhibition played little or no role as limiting factors. More generally, salt inhibition would appear to be a possible explanation for the discrepancy between the tolerance to added ethanol and the maximum concentration of produced ethanol reported in the literature for fermentation studies involving thermophilic bacteria.  相似文献   

13.
Embryo metabolism is an indicator of viability and, therefore, efficiency of the culture medium. Currently, little is known regarding porcine embryo metabolism. The objective of our study was to evaluate glucose and pyruvate uptake and lactate production in porcine embryos cultured in two different media systems. Oocytes were matured and fertilized according to standard protocols. Embryos were allocated randomly into two culture treatments, NCSU23 medium or G1.2/G2.2 sequential culture media 6-8 h post-insemination (hpi). Embryo substrate utilization was measured at the two-cell (24-30 hpi), 8-cell (80 hpi), morula (120 hpi), and blastocyst (144 hpi) stages using ultramicrofluorimetry. Glucose uptake was higher (P < 0.05) in two-cell embryos cultured in G1.2 than in NCSU23 medium (4.54 +/- 0.71, 2.16 +/- 0.87 pmol/embryo/h, respectively). Embryos cultured in G1.2/G2.2 produced significantly more lactate than those in NCSU23 at the eight-cell stage (9.41 +/- 0.71, 4.42 +/- 0.95 pmol/embryo/hr, respectively) as well as the morula stage (11.03 +/- 2.31, 6.29 +/- 0.77 pmol/embryo/hr, respectively). Pyruvate uptake was higher (P < 0.05) in morula cultured in G1.2/G2.2 versus NCSU23 (22.59 +/- 3.92, 11.29 +/- 1.57 pmol/embryo/h, respectively). Lactate production was greater (P < 0.05) in blastocysts cultured in G1.2/G2.2 (38.13 +/- 15.94 pmol/embryo/h) than blastocysts cultured in NCSU23 (8.46 +/- 2.38 pmol/embryo/h). Pyruvate uptake was also greater in blastocysts cultured in G1.2/G2.2 (24.3 +/- 11.04) than those in NCSU23 (11.30 +/- 2.70). When cultured in NCSU23 medium, two- and eight-cell embryos utilized less glucose than morulae and blastocysts, and two-cell embryos produced less lactate than blastocysts (P < 0.05). In G1.2/G2.2 media, two-cells took up less pyruvate than morulae or blastocysts, while blastocysts produced more lactate and utilized more glucose than two-cell, eight-cell and morula stage embryos (P < 0.05). As in other species, glycolysis appears to be the primary metabolic pathway in post-compaction stage porcine embryos. Culture medium composition affects not only substrate uptake, but also metabolic pathways by which these substrates are utilized in porcine embryos at several developmental stages.  相似文献   

14.
Porcine embryo development in vitro is relatively inefficient compared to other domestic species. Currently, a single culture medium (NCSU23) is the standard for porcine in vitro systems. However, the G1.2/G2.2 sequential culture system has been beneficial for embryo development in other species. The objective of this study was to compare porcine preimplantation embryo development in vitro and subsequent blastocyst viability and metabolic activity using NCSU23 and G1.2/G2.2 culture media. Oocytes were matured in defined TCM199 base medium for 45 to 47 h and fertilized in mTBM for 4 h. Embryos were cultured in either NCSU23 for 146 h or G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 74 h. Blastocyst substrate use was measured using a modification of the hanging drop technique. Culture in NCSU23 resulted in a higher percentage (P < 0.05) of embryo cleavage (74.0%) and blastocyst development (14.6%) than culture in G1.2/G2.2 (67.8% and 7.8%, respectively). Both NCSU23 and G1.2/G2.2 produced blastocysts with similar mean cell numbers (51.5 +/- 4.3 and 47.1 +/- 4.3, respectively), similar glucose use (10.81 +/- 1.39 and 10.12 +/- 1.72 pmol/embryo/3 h, respectively) and pyruvate use (1.08 +/- 0.056 and 0.88 +/- 0.048 pmol/embryo/3 h, respectively). These data indicate that a sequential culture system can support porcine embryo development in vitro without compromising embryo viability. However, the G1.2/G2.2 system was not as effective as NCSU23 in supporting blastocyst development. Sequential media should be formulated specifically for porcine embryos to improve embryonic cleavage and blastocyst development.  相似文献   

15.
1. In the activity of the high-Mr beta-glucosidase A (beta-D-glucoside glucohydrolase, EC 3.2.1.21) obtained from culture filtrates of Botryodiplodia theobromae Pat. on o-nitrophenyl beta-D-glucopyranoside as substrate, both Vmax. and Km increased non-linearly with increasing concentration of glycerol, and the Vmax./Km(app.) ratio decreased non-linearly with increasing concentration of glycerol. 2. No increase in rate was observed with phenyl beta-D-glucopyranoside as substrate in the presence of up to 250 mM-glycerol, indicating that glucosylation is rate-limiting with this substrate. 3. With o-nitrophenyl beta-D-glucopyranoside, p-nitrophenyl beta-D-glucopyranoside and phenyl beta-D-glucopyranoside as substrates, kappa cat. values of 793.7 s-1, 62.8 s-1 and 5.4 s-1 respectively were calculated. 4. With o-nitrophenyl beta-D-glucopyranoside and phenyl beta-D-glucopyranoside as substrate, alpha-deuterium kinetic isotope effects of 1.9 +/- 0.03 and 1.01 +/- 0.01 respectively were found; in the presence of 200 mM-glycerol the values were 1.21 +/- 0.03 and 1.02 +/- 0.01 respectively. 5. In the presence of a large excess of o-nitrophenyl beta-D-glucopyranoside [( S] = 35.7 Km), the amount of o-nitrophenol and also of the transglucosylation product formed by beta-glucosidase action increased non-linearly, whereas that of glucose formed decreased non-linearly with increasing glycerol concentration. 6. All these results were found to fit the data calculated from rate equations derived on the basis of the proposed mechanism of enzyme action involving two ion-pair intermediates and a covalent alpha-D-glucosyl-enzyme in the reaction sequence [Umezurike (1987) Biochem. J. 241, 455-462].  相似文献   

16.
The production of phytase and associated feed enzymes (phosphatase, xylanase, CMCase, alpha-amylase and beta-glucosidase) was determined in a thermotolerant fungus Mucor indicus MTCC 6333, isolated from composting soil. Solid-substrate culturing on wheat bran and optimizing other culture conditions (C and N sources, level of N, temperature, pH, culture age, inoculum level), increased the yield of phytase from 266 +/- 0.2 to 513 +/- 0.4 nkat/g substrate dry mass. The culture extract also contained 112, 194, 171, 396, and 333 nkat/g substrate of phosphatase, xylanase, CMCase, beta-glucosidase and alpha-amylase activities, respectively. Simple 2-step purification employing anion exchange and gel filtration chromatography resulted in 21.9-fold purified phytase. The optimum pH and temperature were pH 6.0 and 70 degrees C, respectively. The phytase was thermostable under acidic conditions, showing 82% residual activity after exposure to 60 degrees C at pH 3.0 and 5.0 for 2 h, and displayed broad substrate specificity. The Km was 200 nmol/L and v(lim) of 113 nmol/s per mg protein with dodecasodium phytate as substrate. In vitro feed trial with feed enzyme resulted in the release of 1.68 g inorganic P/kg of feed after 6 h of incubation at 37 degrees C.  相似文献   

17.
Systemic hypoxia results in oxidative stress due to a change in the reactive oxygen species (ROS)-nitric oxide (NO) balance. These experiments explored two mechanisms for the altered ROS-NO balance: 1) decreased NO synthesis by NO synthase due to limited O(2) substrate availability and 2) increased superoxide generation. ROS levels and leukocyte adherence in mesenteric venules of rats during hypoxia were studied in the absence and presence of an NO donor [spermine NONOate (SNO)] and of the NO precursor L-arginine. We hypothesized that if the lower NO levels during hypoxia were due to O(2) substrate limitation, L-arginine would not prevent hypoxia-induced microvascular responses. Graded hypoxia (produced by breathing 15, 10, and 7.5% O(2)) increased both ROS (123 +/- 6, 148 +/- 11, and 167 +/- 3% of control) and leukocyte adherence. ROS levels during breathing of 10 and 7.5% O(2) were significantly attenuated by SNO (105 +/- 6 and 108 +/- 3%, respectively) and L-arginine (117 +/- 5 and 115 +/- 2%, respectively). Both interventions reduced leukocyte adherence by similar degrees. The fact that the effects of L-arginine were similar to those of SNO does not support the idea that NO generation is impaired in hypoxia and suggests that tissue NO levels are depleted by the increased ROS during hypoxia.  相似文献   

18.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

19.
20.
Ahn JH  Kim J  Lim J  Hwang S 《Biotechnology progress》2004,20(4):1069-1075
Biokinetics for autotrophic degradation of thiocyanate using batch culture of Klebsiella sp. were evaluated both analytically and numerically. A sequential approach with an analytical method followed by a numerical approximation was used to evaluate and to ensure the accuracy of the parameter estimation. The nonlinear least-squares method with a 95% confidence interval was employed. The growth conditions were maintained at pH 7 and 38 degrees C for all experiments. With an automated incubation and turbidity reader, a total of 16 different initial thiocyanate concentrations, ranging from 10 to 300 mg L(-1), were used to develop a kinetic expression of specific growth rate as a function of substrate concentration. The biodegradation of thiocyanate with Klebsiella sp. followed a substrate inhibition pattern. Three identical automated bioreactors with working volumes of 1.5 L, equipped with sterilizable sampling ports, were also used for the numerical approximation of the biokinetic parameters in batch mode. A fourth order Runge-Kutta method was used to approximate the substrate inhibition kinetics of the Klebsiella sp. utilizing thiocyanate. Although the kinetic coefficients estimated by analytical and numerical methods were not statistically different at a 0.05 alpha level, model responses of numerical approximation generated a better prediction of changes in thiocyanate and cell mass concentrations. The hypothetical maximum growth rate, micro m, half saturation coefficient, Ks, microbial yield coefficient, Y, cell mass decay rate coefficient, kd, and substrate inhibition coefficient, Ksi, were evaluated as being 0.62 +/- 0.05 d(-1), 85 +/- 8 mg SCN- L(-1), 0.076 +/- 0.011 mg cell mass (mg SCN)(-1), 0.03 +/- 0.002 d(-1), and 131 +/- 22 mg SCN- L(-1), respectively. The calculated maximal substrate concentration, Sm, and apparent maximum specific growth rate, micro'm, were 105.5 +/- 8.7 mg SCN- L(-1) and 0.24 +/- 0.01 d(-1), respectively. Using these estimated parameters, the theoretical performance of the continuous operation was also illustrated, which depicts the residual thiocyanate and Klebsiella sp. concentrations in the non-steady and steady states at different hydraulic retention times (HRTs). Assuming the influent concentration of 250 mg SCN- L(-1), the expected treatment efficiency ranged from 94.9% to 69.4% between 20 and 5 days HRT, respectively. Klebsiella sp. was expected to be washed out at 4.8 days HRT, thus resulting in no treatment of thiocyanate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号