首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Multani AS  Ozen M  Furlong CL  Zhao YJ  Hsu TC  Pathak S 《Chromosoma》2001,110(3):214-220
The purpose of this investigation was twofold. The first objective was to demonstrate that, in most of ten mammalian species commonly used in biomedical research, not all constitutive heterochromatin (C-bands) represents telomeric DNA. For example, the C-bands in human chromosomes, the long arm of the X and the entire Y chromosome of Chinese hamster, and most of the short arms of Peromyscus and Syrian hamster chromosomes are not telomeric DNA. In addition to the usual terminal telomeric DNA in the chromosomes of these mammalian species, the pericentromeric regions of seven or eight Syrian hamster chromosomes and all Chinese hamster chromosomes except pair one have pericentromeric regions that hybridize with telomeric DNA, some in C-bands and some not. The second objective was to describe a simple fluorescence in situ hybridization (FISH) reverse-printing procedure to produce black-and-white microphotographs of metaphase and interphase cells showing locations of telomeric DNA with no loss of resolution. Thus, at least three different types of heterochromatin (telomeric heterochromatin, nontelomeric heterochromatin and a combination of both) are present in these mammalian species, and this simple black-and-white reverse printing of telomeric FISH preparations can depict them economically without sacrificing clarity.  相似文献   

2.
Prophase chromosomes of Drosophila hydei were stained with 0.5 g/ml Hoechst 33258 and examined under a fluorescence microscope. While autosomal and X chromosome heterochromatin are homogeneously fluorescent, the entirely heterochromatic Y chromosome exhibits an extremely fine longitudinal differentiation, being subdivided into 18 different regions defined by the degree of fluorescence and the presence of constrictions. Thus high resolution Hoechst banding of prophase chromosomes provides a tool comparable to polytene chromosomes for the cytogenetic analysis of the Y chromosome of D. hydei. — D. hydei heterochromatin was further characterized by Hoechst staining of chromosomes exposed to 5-bromodeoxyuridine for one round of DNA replication. After this treatment the pericentromeric autosomal heterochromatin, the X heterochromatin and the Y chromosome exhibit numerous regions of lateral asymmetry. Moreover, while the heterochromatic short arms of the major autosomes show simple lateral asymmetry, the X and the Y heterochromatin exhibit complex patterns of contralateral asymmetry. These observations, coupled with the data on the molecular content of D. hydei heterochromatin, give some insight into the chromosomal organization of highly and moderately repetitive heterochromatic DNA.  相似文献   

3.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

4.
Different diploid chromosome numbers have been reported for the tufted deer Elaphodus cephalophus (female, 2n = 46/47; male, 2n = 47/48) in earlier reports. In the present study, chromosomal analysis of seven tufted deer (5 male symbol, 2 female symbol) revealed that the karyotype of these animals contains 48 chromosomes, including a pair of large heteromorphic chromosomes in the male. C-banding revealed these chromosomes to be very rich in constitutive heterochromatin. Chromosome banding and PCR of sex chromosome-linked genes (SRY, ZFX, ZFY) performed on DOP-PCR products of single microdissected X and Y chromosomes confirmed that the large telocentric chromosome without secondary constriction is the X chromosome whereas the subtelocentric chromosome is the Y. The increased size of both, the X and Y chromosome, appears to be at least partially attributable to the presence of substantial amounts of heterochromatin.  相似文献   

5.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

6.
J. Żuk 《Chromosoma》1969,27(3):338-353
The Y chromosome heterochromatin in Rumex thyrsiflorus has been analyzed. In natural populations the Y chromosome shows a higher morphological variability than the X chromosome. The total duration of replication of Y chromosomes is about 2 hrs longer than that of euchromatin. Autoradiography with tritiated thymidine showed that chromocentres formed by Y chromosomes in interphase nuclei retain their heterochromatic form during DNA replication. — Y chromosome heterochromatin in interphase nuclei is stained pink, while the rest of the nucleus stains green after fast green-eosin staining for histones. — During the premeiotic stage of PMC development Y chromosomes are no longer visible as compact bodies and become more fuzzy in appearance. A diffuse state of Y coincides with intense RNA synthesis. Therefore genetic activity of Y chromosomes or their parts during premeiotic stage of microsporogenesis is postulated.  相似文献   

7.
The karyotype of the spiny eel (Mastacembelus aculeatus) has highly evolved heteromorphic sex chromosomes. X and Y chromosomes differ from each other in the distribution of heterochromatin blocks. To characterize the repetitive sequences in these heterochromatic regions, we microdissected the X chromosome, constructed an X chromosome library, amplified the genomic DNA using PCR and isolated a repetitive sequence DNA family by screening the library. All family members were clusters of two simple repetitive monomers, MaSRS1 and MaSRS2. We detected a conserved 5S rDNA gene sequence within monomer MaSRS2; thus, tandem-arranged MaSRS1s and MaSRS2s may co-compose 5S rDNA multigenes and NTSs in M. aculeatus. FISH analysis revealed that MaSRS1 and MaSRS2were the main components of the heterochromatic regions of the X and Y chromosomes. This finding contributes additional data about differentiation of heteromorphic sex chromosomes in lower vertebrates.  相似文献   

8.
Identification of sex chromosomes in lake trout (Salvelinus namaycush)   总被引:2,自引:0,他引:2  
In the male trout there is a difference in the quinacrine banding and C-banding patterns between the two homologs of the second largest chromosome pair. This chromosome is the only large submetacentric in the karyotype, making it easy to identify and suggesting that the sex chromosomes have become differentiated since the time of tetraploidization. In males one homolog has a medium-to-large quinacrine bright heterochromatic band on the end of the short arm, while the other lacks it completely. In females both homologs have medium-to-large quinacrine bright heterochromatic bands. Approximately half the progeny from every lake trout cross studied and half the eggs from every lake trout population examined were heteromorphic for a difference in this chromosome band. Results from sexed fish, reciprocal F1 hybrids between brook trout and lake trout, and gynogenetic haploids are all consistent with the interpretation that chromosome 2 is the sex chromosome. These results suggest that the addition of heterochromatin to the X can be the first step in the inhibition of crossing over between the X and Y chromosomes required for sex chromosome differentiation.  相似文献   

9.
The replication pattern of the X and Y chromosomes at the beginning of the synthetic phase was studied in human lymphocyte cultures partially synchronized by the addition of 5-fluoro-2-deoxyuridine (FUdR). The data were evaluated statistically by an analysis of the distribution of silver grain counts over the X and Y chromosomes. —In cells from normal females, one of the X chromosomes began replication later than any other chromosomes of the complement. The short arm of the late replicating X chromosome started replication earlier than the long arm. The telomeric region of the short arm was a preferential site of DNA synthesis at the beginning of replication. —In partially synchronized lymphocyte cultures from a patient with the XXY syndrome, the Y chromosome started replication together with the late replicating X chromosome. The Y chromosome most frequently replicated synchronously with the short arm of the X. The centromeric region of the Y chromosome initiated synthesis before the telomeric region and appeared to replicate synchronously with the telomeric region of the short arm of the X. These findings are discussed with reference to the pairing of the X and Y chromosomes at meiosis.Supported in part by the National Institute of Health Research Grant HD-01979 and National Foundation Birth Defects Research Grant CRCS-40. Dr. Knight was a predoctoral fellow under National Institute of Health Training Program HD-00049-09.  相似文献   

10.
Cytogenetic analysis in three Rineloricaria pentamaculata populations revealed diploid number 2n = 56 chromosomes, karyotype formula 8m/sm + 48st/a and FN = 64. Owing to the presence of the heteromorphic chromosome pair with a big submetacentric chromosome and a small acrocentric one in both males and females, 42.9% of specimens in the Tauá Stream population had the karyotype formula 9m/sm + 47st/a and FN = 65. Analysis of the nucleolus-organizing region by Ag-NOR and FISH techniques showed a single NOR system at pair 5 for R. pentamaculata populations of the Keller River and the Tauá Stream. However, specimens of populations of the Tatupeba Stream had multiple NOR systems at pairs 5 and 8. A constitutive heterochromatin pattern in R. pentamaculata is mainly distributed in the pericentromeric and telomeric regions with interstitial markers in certain chromosomes. Heterochromatin is located in the telomeric and centromeric positions of the acrocentric chromosome in the heteromorphic pair of the Tauá Stream population. In the submetacentric chromosome the markings are located in the telomeric (short arm), pericentomeric and interstitial (long arm) positions. The origins of polymorphisms are discussed.  相似文献   

11.
毛冠鹿种内异染色质变化与染色体多态   总被引:1,自引:0,他引:1  
采用原代和传代培养方法对8头毛冠鹿(Elaphodus cephalophus)的皮肤细胞进行了染色体研究,发现了一种核型与以前所报道的几种核型不一致,确定为一新核型。在该核型中,染色体众数2n=47,2条X染色体异型,一条为端着丝粒,另一条为近端着丝粒。C-带显示该核型中异染色质除了分布在2条X染色体长臂中之外,在第一对大的端着丝粒染色体中的一条近着丝粒区出现一异染色质“柄”。结合C-带及薄层扫描结果对毛冠鹿种内常染色体、性染色体中异染色质的含量和分布与染色体多态的关系进行了探讨。  相似文献   

12.
P Iturra  A Veloso 《Genetica》1988,78(1):25-31
Chromosome banding and meiotic evidence show that XX/XY systems found in two Eupsophus species (Amphibia-Leptodactylidae) represent early stages of sex chromosome differentiation. Pair 14 is heteromorphic in E. migueli males and represents the heterochromosomes. In E. roseus this pair is metacentric and does not show heteromorphism. Paracentromeric constitutive heterochromatin is present in all chromosomes except in the E. migueli and E. roseus metacentric Y chromosomes. Constitutive heterochromatin loss is the structural modification responsible for Y chromosome differentiation. Pericentric inversions may have modified the morphology of the X chromosome of Eupsophus species.  相似文献   

13.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

14.
The mitotic chromosomes of the neotenic (sensu Gould, 1977, and Alberch et al., 1979) salamander Necturus maculosus (Rafinesque) have been examined using a C-band technique to demonstrate the distribution of heterochromatin. The C-banded mitotic chromosomes provide evidence of a highly differentiated XY male/XX female sex chromosome heteromorphism, in which the X and Y chromosomes differ greatly in size and morphology, and in the amount and distribution of C-band heterochromatin. The X chromosome represents one of the largest biarmed chromosomes in the karyotype and is indistinguishable from similar sized autosomes on the basis of C-band heterochromatin. The Y chromosome, on the other hand, is diminutive, morphologically distinct from all other chromosomes of the karyotype, and is composed almost entirely of C-band heterochromatin. The discovery of an X/Y chromosome heteromorphism in this species is consistent with the observation by King (1912) of a heteromorphic spermatogenic bivalent. Karyological and phylogenetic implications are discussed.  相似文献   

15.
A presumptive mechanism of X inactivation has been investigated by using tritiated uridine-induced chromosome aberrations to distinguish active from inactive X chromosome arms in the insect Gryllotalpa fossor. Previous work on therian mammals has shown that constitutive and facultative heterochromatin are less susceptible to breakage by 3H-Urd than euchromatin (active). The present study indicates that, irrespective of the presence of two X chromosomes in females, only one of these is affected as in males and that the total number of aberrations induced by 3H-Urd in both male and female Gryllotalpa is the same. This suggests that in the female only one arm of one X chromosome is active and that a facultative heterochromatinization of the homologous arm of the other X is operative coupled with the presence of constitutive heterochromatin in the second arm of both X chromosomes.  相似文献   

16.
On the homology between the X and the Y chromosomes of the Chinese hamster   总被引:1,自引:0,他引:1  
Tadashi Utakoji 《Chromosoma》1966,18(3):449-454
The chiasmatic association of the heteromorphic sex chromosomes in the spermatocytes of the Chinese hamster was observed in squash and/or air-dried preparations. The pairing arm of the Y was invariably its short arm. Although the X in diakinesis did not show distinct long and short arm as in mitotic metaphase, the DNA replication patterns of the sex chromosomes in spermatogonia suggested that the distal segment of the long arm of the X is homologous to the short arm of the Y.  相似文献   

17.
18.
Sex chromosomes have been studied in many plant and animal species. However, few species are suitable as models to study the evolutionary histories of sex chromosomes. We previously demonstrated that papaya (Carica papaya) (2n = 2x = 18), a fruit tree in the family Caricaceae, contains recently emerged but cytologically heteromorphic X/Y chromosomes. We have been intrigued by the possible presence and evolution of sex chromosomes in other dioecious Caricaceae species. We selected a set of 22 bacterial artificial chromosome (BAC) clones that are distributed along the papaya X/Y chromosomes. These BACs were mapped to the meiotic pachytene chromosomes of Vasconcellea parviflora (2n = 2x = 18), a species that diverged from papaya ∼27 million years ago. We demonstrate that V. parviflora contains a pair of heteromorphic X/Y chromosomes that are homologous to the papaya X/Y chromosomes. The comparative mapping results revealed that the male-specific regions of the Y chromosomes (MSYs) probably initiated near the centromere of the Y chromosomes in both species. The two MSYs, however, shared only a small chromosomal domain near the centromere in otherwise rearranged chromosomes. The V. parviflora MSY expanded toward the short arm of the chromosome, whereas the papaya MSY expanded in the opposite direction. Most BACs mapped to papaya MSY were not located in V. parviflora MSY, revealing different DNA compositions in the two MSYs. These results suggest that mutation of gene(s) in the centromeric region may have triggered sex chromosome evolution in these plant species.  相似文献   

19.
石貂的染色体研究   总被引:1,自引:0,他引:1  
本文对分布在我国的石貂北方亚种染色体进行了较详细的研究。结果表明2n=38,核型为14(M)+4(SM)+18(ST),XY(M,A)。C-带显示该亚种的一些染色体着丝粒区域结构异染色质弱化或消失。No,9染色体的短臂完全异染色质化;X染色体长臂丰出现插入杂色质带;Y为完全结构异染色质组成。  相似文献   

20.
The chromosomes of one male and three female gorillas were extensively studied with various regional banding methods. The chromosomes were stained with the fluorescent dyes quinacrine mustard and distamycin A/DAPI (DA/DAPI), which label different subsets of heterochromatin in the chromosome complement. Furthermore, lymphocyte cultures were treated with the cytidine analog 5-azacytidine (5-azaC). The 5-azaC-induced undercondensations were found in most of the DA/DAPI-bands as well as in many telomeric C-bands. The karyotype of the gorilla exhibits a considerable number of heterochromatin variants. Of the different types of heteromorphisms noted, the most striking is that involving the short arm regions of chromosomes 12 to 16 and 23 (satellite stalk regions) and the paracentromeric heterochromatin of chromosomes 17 and 18. There also are numerous heteromorphic C-bands localized in the telomeric regions of homologous chromosome arms. In comparison, only few heteromorphisms occur between C-bands in the centromeric and pericentromeric regions of homologs. Finally, a variability in the fluorescence intensity of quinacrine-bright satellites in the short arms of chromosomes 12 to 16, 22, and 23 is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号