首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In an experimental flume, we examined the effects of a biomass reduction and alteration of taxonomic composition, because of grazing by the fish Plecoglossus altivelis, on the net biomass accumulation of periphyton. 2. Grazed and ungrazed assemblages with different biomass and taxonomic composition were first prepared in fish enclosures and exclosures, respectively. These assemblages were then set out in the flume and incubated for 2 days under grazing‐free conditions to examine (i) the relationship between biomass and biomass accumulation rate and (ii) the effect of taxonomic composition on the relationship between these two. 3. The grazed and ungrazed assemblages were dominated by upright filamentous cyanobacteria and diatoms, respectively. The rate of biomass accumulation decreased with increasing periphyton biomass in both the grazed and ungrazed assemblages, and was lower in the grazed than the ungrazed assemblages at any biomass level. 4. The results showed that the reduction in biomass and the alteration of taxonomic composition due to fish grazing have opposite effects on biomass‐specific productivity. Biomass accumulation rate increased in response to biomass reduction, although a shift in dominance from diatoms to upright filamentous cyanobacteria decreased the overall productivity of the periphyton.  相似文献   

2.
We examined the relationship between the δ13C and taxonomic composition of benthic algae collected from a riffle (fast current habitat) of a non‐shaded mountain stream, which is a tributary of the Kiso River, Japan. The benthic algal δ13C ranged from ?20.6 to ?14.2‰ and tended to be 13C‐depleted with increasing relative abundance of upright filamentous cyanobacteria and 13C‐enriched with increasing relative abundance of prostrate filamentous cyanobacteria. Using isotopic mass balance equations, the relative abundance of the dominant taxa, upright and prostrate filamentous cyanobacteria, small diatoms and others, explained 74% of δ13C variability. This study shows a case where the difference in taxonomic composition is a possible source of the isotopic variability of benthic algae, which is a mixture of taxa with distinct isotopic signatures.  相似文献   

3.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

4.
Does light intensity modify the effect mayfly grazers have on periphyton?   总被引:1,自引:0,他引:1  
1. A factorial experiment was conducted in artificial outdoor streams to quantify the effects of irradiance (two levels) and two mayfly grazers (four densities of each) on periphytic community structure. The mayflies were Ecdyonurus venosus (Heptageniidae), a grazer using brushing mouthparts, and Baetis spp. (Baetidae) a grazer which uses mandibles and maxilla to scrape and gather periphyton. The experiment ran for 16 days. 2. Grazer densities in channels approximated those existing in a shoreline habitat in the River Sihl, Switzerland. Light treatments were natural (daily mean = 810 μmol m–2 s–1) and shaded (daily mean = 286 μmol m–2 s–1). 3. Higher irradiance increased total algal abundance by a factor of 4. Algae most affected were prostrate/motile and erect diatoms, filamentous chlorophytes and Hydrurus foetidus. 4. Both species of mayfly reduced periphytic and algal biomass. Mayfly–mayfly interactions, however, were associated with statistical increases in algal biovolume and chlorophyll-a content, indicating that the two grazers may have interfered with one another as their densities increased. The mayfly–mayfly interaction did not influence periphytic ash-free dry mass (AFDM). Light modified the influence of Ecdyonurus such that this mayfly produced greater reductions in algal biovolume under high irradiance. 5. Despite efforts to exclude other grazers, chironomids colonized experimental channels. Chironomid biomass was approximately eight times less than mayflies across treatments and was positively correlated with all measures of periphytic abundance, suggesting that these grazers were responding to periphyton rather than controlling it. Chironomids were also associated with an increase in the abundance of diatoms having a prostrate/motile physiognomy. The only physiognomy to show a negative relationship with chironomid biomass was the thallus type, a form which comprised less than 1% of the algal biovolume across channels. 6. Ecdyonurus and Baetis had distinct influences on algal physiognomy. Ecdyonurus, for example, reduced adnate, stalked and Achnanthes-type physiognomies, but was associated with a significant increase in the abundance of filamentous chlorophytes (primarily Ulothrix sp.). Baetis reduced erect, Achnanthes-type and thallus physiognomies. Neither mayfly influenced the abundance of prostrate/motile diatoms; a physiognomy that comprised 21% of the algae in channels. 7. Light and mayfly interactions affected algal community structure. The interaction of Ecdyonurus with light had a negative effect on erect diatoms, filamentous chlorophytes and the thallus physiognomy, but a positive effect on stalked and Achnanthes-type physiognomies. Baetis interacting with light had a positive effect on adnate diatoms. 8. Although both mayfly taxa influenced periphytic community structure, physiognomy was not a good predictor of algal susceptibility to grazing. The type of substratum to which an alga is attached (detritus or algal filaments vs hard surfaces) and location within the periphytic matrix may be better indicators of vulnerability to grazing than physiognomy.  相似文献   

5.
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient‐enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer‐resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom‐up (nutrient limitation) and from the top‐down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.  相似文献   

6.
Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23°N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e.g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0–22.3 mg m−2. Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to ‘gardening’ by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Luis Mauricio Bini  相似文献   

7.
Temporal patterns of grazer-periphyton interactions in laboratory streams   总被引:1,自引:0,他引:1  
SUMMARY. 1. The snail Juga silicuta (500 m?2) and the caddisfly Dicosmoecus gilvipes (50 m?2) were introduced into separate laboratory streams on days 1, 9, 16 and 28 of algal development. The mayfly Baetis spp. (500 m?2) was introduced on days 1 and 16, and two streams did not receive grazers. We assessed the interaction between succession in the pcriphyton, herbivore type and time of encounter in a 40-day experiment. 2. In ungrazed streams, the chlorophyte Scenedesmus obliquus was the most abundant early colonizer. The relative abundance of diatoms increased after day 9, and at day 40 the algal assemblage consisted of a thick mat of diatoms and S. obliquus with an overstorey of filaments of the chlorophyte Stigeoclonium tenue. In general, introductions of grazers at any stage altered this pattern by removing biomass, accelerating the replacement of S. obliquus by diatoms, and suppressing the growth of filaments. Grazing also reduced the relative abundance of the larger diatom Nitzschia oregona but increased the relative abundance of the smaller adnate diatoms Nitzschia frustulum var. perpusilla and Navicula minima. 3. Dicosmoecus decreased algal biomass and altered successional trajectories to a greater degree than either Juga or Baetis. Dicosmoecus rapidly grazed the entire substrate, whereas Juga and Baetis only cleared patches in the assemblages. Little alteration in algal development was observed in the Baetis streams after day 16, probably because (he periphyton assemblages attained a size and structure that prevented effective grazing by Baetis. 4. The patchy grazing patterns of Juga and Baetis resulted in more diverse algal assemblages than either the Dicosmoecus grazed or ungrazed streams. In natural streams, the temporal and spatial pattern of grazing relative to the developmental stage of the periphyton may contribute to maintaining a mosaic of algal patches in different serai stages.  相似文献   

8.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

9.
1. Epilithic algae grown on elevated or non-elevated ceramic tiles were exposed (to produce assemblages with different grazing histories) in a heavily grazed, montane stream in New Mexico, U.S.A. to Ameletus nymphs (Ephemeroptera) and Ecclisomyia larvae (Trichoptera) and the algal composition in insect faeces was compared to that on the tiles. Differences in grazing and digestion efficiency between grazers were then assessed and also differences in susceptibility to ingestion and digestibility among common algae. 2. Ordination of tile and faecal samples, using the relative abundance of common algae, revealed that: (i) algal assemblages on elevated vs. non-elevated tiles differed only slightly; (ii) the taxonomic composition of algae in faeces of both caddis and mayflies differed substantially from that on the tiles, indicating low grazing efficiency for some algal taxa; and (iii) the algal composition of faeces produced by caddis larvae and mayflies was similar, indicating little difference in grazing efficiency between them. However, some algal taxa were more susceptible to ingestion by caddisfly larvae when occurring on elevated tiles than on non-elevated tiles, suggesting that previous exposure to caddis grazing influenced assemblage attributes. 3. Although Ameletus and Ecclisomyia differed little in grazing efficiency, the percentage of diatoms that were dead after passage through the gut was greatest in the mayfly treatment, suggesting that mayflies digested diatoms more efficiently than the caddis. Analyses of differences in the condition of chloroplasts within diatoms in tile and faecal samples showed that losses of ’live‘ diatom cells (i.e. those containing full chloroplasts) during gut passage through mayflies equalled the increase, in faeces, of ’dead‘ (empty frustules) cells of all common diatoms. In contrast, some diatoms were digested inefficiently by caddis larvae. 4. Algae on elevated tiles contained a higher proportion of dead diatoms than those on non-elevated tiles, possibly because mayflies visited raised tiles more often and, consequently, ingested and defaecated cells at a higher rate in the absence of caddis larvae. Moreover, diatom taxa differed in the percentage of cells that were dead within tile assemblages, with populations of typically grazer-resistant taxa (e.g. Achnanthidium minutissimum, Planothidium lanceolatum and Cocconeis placentula var. euglypta) containing significantly more dead cells than grazer-susceptible taxa [e.g. small, chain-forming Fragilaria (= Staurosirella)]. This result suggests that a trade-off exists between ingestion vs. digestion resistance of microalgae. Both the ingestion and digestion efficiency of algivorous macroinvertebrates could influence the structure and function of algal assemblages. In heavily grazed systems, where algal cells are probably processed through grazer guts repeatedly, differential resistance to digestion among algae may be particularly important.  相似文献   

10.
The effects of herbivory and the season of disturbance on species composition and algal succession were experimentally tested at a tropical intertidal shore, Phuket Island, Thailand. Dead coral patches were cleared of all organisms during both the dry and rainy seasons in order to study the effects of season on algal succession and cages were set up to exclude fish herbivory. Algal succession in this intertidal habitat showed a simple pattern and took a year from the early Ulva paradoxa C. Agardh stage to the late Polysiphonia sphaerocarpa Børgesen stage. The abundance of algae during succession was under the influence of seasonal change. U. paradoxa reproduced and recruited throughout the year. Caging effects did not apparently influence algal abundance, perhaps because resident herbivorous damselfishes excluded other herbivores from their territories and maintained their algal “farms”. Unexpectedly, the percent cover of Ulva in the caged plots was lower than in uncaged plots. This pattern may indicate that caging excluded damselfishes only, but allowed small herbivores that consumed substantial amounts of soft filamentous algae in the cages.  相似文献   

11.
Jan Köhler 《Hydrobiologia》1994,289(1-3):73-83
The River Spree (Germany) flows through an impoundment and several shallow lakes in its middle and lower course. In this river-lake system, the seasonal and longitudinal dynamics of dominant phytoplankton populations were studied in relation to retention time of water, mixing conditions and nutrient supply from 1988–92. Some phytoplankton species populated the same river section for weeks or months each year at their season. Such stable populations have to origin from river zones functioning like mixed reactors. In the Spree system, centric diatoms originated from an impoundment and filamentous cyanobacteria from a flushed lake with longer retention time of water. Downstream, biomass and composition of phytoplankton altered nearly simultaneously along the system.The fate of planktonic organisms washed from mixed reactors into the flow depended on the conditions at the zones of origin. During spring, populations dominating phytoplankton communities of the well-mixed lakes grew further under river conditions. However the biomass of summer species, adapted to intermittent stratification, was halved along the river course. These seasonal differences were probably caused by lower maximum growth rates of summer species and enhanced losses (photorespiration, sedimentation or grazing of benthic filter feeders, but not of zooplankton) of algal populations under river conditions in summer.Phytoplankton assimilation, settlement of diatoms, or denitrification caused declining (probably growth limiting) concentrations of dissolved inorganic phosphorus (spring), silicon (early summer) or nitrogen (summer) along the river course, respectively. The minimum content of DRP was often followed by a clear-water phase. Reduced DSi supply selected against diatoms and additional DIN shortage favoured N2-fixing cyanobacteria in the last lake of the system.R-strategists (sensu Reynolds) were selected in both the flushed, shallow lakes and the lowland river. In general, the biomass of cyanobacteria increased within the lakes and declined along the river course. Some diatom populations grew in the river, but were grazed or settled down in the lakes. Beside this general picture, different populations from the same phylogenetic group did not necessarily perform in similar ways.  相似文献   

12.
Degans  Hanne  De Meester  Luc 《Hydrobiologia》2002,479(1-3):39-49
Biomanipulation, through the reduction of fish abundance resulting in an increase of large filter feeders and a stronger top-down control on algae, is commonly used as a lake restoration tool in eutrophic lakes. However, cyanobacteria, often found in eutrophic ponds, can influence the grazing capacity of filter feeding zooplankton. We performed grazing experiments in hypertrophic Lake Blankaart during two consecutive summers (1998, with and 1999, without cyanobacteria) to elucidate the influence of cyanobacteria on the grazing pressure of zooplankton communities. We compared the grazing pressure of the natural macrozooplankton community (mainly small to medium-sized cladocerans and copepods) with that of large Daphnia magna on the natural bacterioplankton and phytoplankton prey communities. Our results showed that in the absence of cyanobacteria, Daphnia magna grazing pressure on bacteria was higher compared to the grazing pressure of the natural zooplankton community. However, Daphnia grazing rates on phytoplankton were not significantly different compared to the grazing rates of the natural zooplankton community. When cyanobacteria were abundant, grazing pressure of Daphnia magnaseemed to be inhibited, and the grazing pressure on bacteria and phytoplankton was similar to that of the natural macrozooplankton community. Our results suggest that biomanipulation may not always result in a more effective top-down control of the algal biomass.  相似文献   

13.
We investigated the independent and interactive effects of nutrient enrichment and snail grazing on structuring periphyton communities in a northern temperate lake. Nutrient releasing substrates and grazer enclosures were used to simultaneously manipulate nutrient availability and herbivory. Periphyton was allowed 18 days to accrue before grazers (Elimia livescens = Goniobasis livescens) were introduced.Addition of nitrogen and phosphorus caused a significant increase in biovolume (p < 0.001), whereas grazing had no significant effect on biovolume but resulted in a shift in species composition. Four taxa were largely responsible for the increase in biovolume on the nutrient enriched substrates: Oedogonium sp, Stigeoclonium tenue, Navicula radiosa var. radiosa and Navicula radiosa var. tenella. By the 28th day, nutrient enrichment caused a shift from a community dominated by diatoms (Bacillariophyceae) to a community dominated by green algae (Chlorophyceae). Blue green algae (Myxophyceae) maintained an equal proportion in high and low-nutrient regimes.Grazing had a more pronounced effect on altering community composition on the nutrient enriched substrates than on the unenriched substrates. Grazing caused a decrease in diversity and an increase in dominance by green algae on the nutrient enriched substrates. The relative biovolume of green algae increased from 64% to 93% on grazed substrates, due to the significant increase in relative abundance of Stigeoclonium tenue. This taxon has both prostate basal cells and erect filamentous cells. The ratio of basal: filamentous cells increased from 4.7 to 5.2 with grazing, suggesting that the heretotrichous growth form of Stigeoclonium tenue is adapted to grazing by virtue of the basal cells which are able to adhere to the substratum and resist being grazed.  相似文献   

14.
We studied herbivory and grazer performance (i.e., fitness correlates) for the hydrobiid snail Potamopyrgus antipodarum, the leptophlebiid mayfly Deleatidium spp., and the conoesucid caddisfly Pycnocentrodes aeris, common, co-occurring algivores in many New Zealand streams. Grazing effects and costs of coexisting differed among these taxa reared at ambient densities in different combinations in microcosms with algal food conditions (on clay tiles) characteristic of heavily grazed streams. The prostrate diatoms Staurosirella leptostauron, Cymbella novazealandia, and Achnanthidium minutissimum were the dominant algal species on pre- and post-grazed tiles. The relative abundance of erect physiognomic forms, dominated by Synedra ulna and Fragilaria vaucheriae, were 2–3× higher in ungrazed controls and in snail alone treatments than in other grazer treatments. The green filamentous algae Mougeotia sp. and Stigeoclonium lubricum, and the cyanophyte Merismopedia glauca were present only in ungrazed controls. Grazers significantly reduced algal community biomass in treatments by 26–52% relative to controls, except snails alone. Snails (15–30%) burrowed into surrounding sand substrates, dampening their grazing impact on tiles. Caddisflies were more effective than mayflies or snails at removing algae because of higher foraging rates, a larger body size, and an abrasive sand-grained case. Algal biomass reductions did not affect grazer growth. However, pre-pupation rates of caddisflies and emergence rates of subimago mayflies were significantly higher in caddisfly-alone and mayfly-alone treatments, respectively, than in combined-species treatments. These results imply that a limited periphytic food supply ( < 0.3 mg AFDM cm−2) even over a relatively brief period ( ≤ 16 d) may have population-scale consequences for co-existing P. aeris and Deleatidium spp.  相似文献   

15.
The body size of an individual zooplankton is well related to its grazing rate and to the range of particle sizes it can ingest, and since cladocerans and copepods feed differently, they follow different relationships. Based on these general patterns in individual organisms, we tested whether the size structure and taxonomic composition of more complex natural zooplankton communities are related to their in situ grazing rate and to the range of algal sizes they graze. We compared community grazing rates on individual algal taxa in two communities dominated by small cladocerans, three communities dominated by large cladocerans and three copepod-dominated communities. Small algae were usually grazed most intensively, but grazing rates were poorly related to algal size alone. The range in size of grazed algae increased with increasing mean zooplankton body size, but differed systematically with their taxonomic composition. Communities dominated by Ceriodaphnia or Holopedium grazed a narrower size range of algae [maximum greatest axial length dimension (GALD)=16–36 μm)] than communities with large biomasses of Bosmina or Daphnia (maximum GALD=28–78 μm). Copepod-dominated communities followed the same general relationship as cladocerans. Daphnia-dominated communities grazed the broadest range of algal sizes, and their total grazing rates were up to 2.4 times their grazing rates on small (<35 μm) “highly edible” algae, a difference of similar magnitude to those found in successful trophic cascade biomanipulations. Received: 31 March 1998 / Accepted: 19 October 1998  相似文献   

16.
1. Positive effects of fish on algal biomass have variously been attributed to cascading top‐down effects and to nutrient enrichment by fish excretion. 2. Here, we used a combination of field and laboratory approaches to test an additional hypothesis, namely that the physical resuspension of settled algal cells by fish enhances algal biomass and alters community composition. 3. A multi‐lake survey showed that phytoplankton biomass and the fraction of motile algae increased with the concentration of inorganic suspended solids. This correlation could not be explained by wind‐induced resuspension because of the small size of the lakes. 4. In an enclosure experiment, chlorophyll‐a concentration, phytoplankton abundance and inorganic suspended solids increased significantly in the presence of Cyprinus carpio (common carp), but only if the fish had access to the sediment. No such effects were seen when a net prevented carp reaching the sediment. 5. The effects of enhanced nutrients and reduced zooplankton grazing as a result of fish feeding could not (fully) explain these observations, suggesting that the resuspension by carp of settled algae from a surface film on the sediment was the major factor in the outcome of the experiment. 6. An increase in diatoms and green algae (organisms with a relatively large sedimentation velocity) only in enclosures where carp could reach the sediment supported this view. 7. Several lines of evidence indicate that fish‐induced resuspension of algal cells from the sediment is an important mechanism that affects phytoplankton biomass and community composition in shallow lakes.  相似文献   

17.
Zooplankton may at times graze cyanobacteria. However, their top-down effects are considered to be low, particularly in tropical regions dominated by small-size grazers that may be unable to consume efficiently filamentous or colonial species. Recently, cyanobacteria blooms were reported in the Senegal River hydrosystem. We conducted feeding experiments to assess the ability of copepods (Pseudodiaptomus hessei and Mesocyclops ogunnus), cladocerans (Moina micrura and Ceriodaphnia cornuta), and rotifers (Brachionus angularis, B. falcatus, and Keratella sp.) to control different cyanobacteria (Cylindrospermopsis raciborskii, Anabaena solitaria, A. flos-aquae, and Microcystis aeruginosa). None of the zooplankton species ingested M. aeruginosa. Mesocyclops ogunnus did not consume any of the cyanobacteria. Both cladocerans consumed the smallest filaments of cyanobacteria, whereas all the rotifers and P. hessei consumed a broader food-size spectrum. The functional feeding responses suggest that the concentration and size of the filaments are not the sole criteria for food consumption. The high zooplankton community grazing rates, estimated by applying the clearance rates measured in the laboratory to the in situ zooplankton abundance, indicate that grazing by zooplankton potentially constitutes an important controlling factor for the filamentous cyanobacteria in the tropics.  相似文献   

18.
Rocky macroalgal assemblages are typically composed of patches differing in age and species composition and grazing is generally a very important modifier of such assemblages. We hypothesized that patch colonization time determines its algal community and that grazing effects depend on the colonization time and vary with depth. We created patches by placing empty substrates at two sublittoral depths over five consecutive months, manipulated grazer entry and determined the algal species composition in each patch in the next growing season. Distinct algal colonization periods resulted in different algal assemblages. Although algal communities in our study area consist mainly of opportunistic species, thus being highly dynamic, the resulting macroalgal assemblages differed in species richness, diversity, composition, and total biomass even a year after first colonization. Substrates close to the water-surface supported a higher species richness and diversity than those in the deeper littoral. The community characteristics, total density, total biomass and species richness were only slightly, if at all affected by grazing. However, individual algal species or taxa showed varying and even contrasting responses to grazing, often differently between depths and depending on colonization time. In the deeper littoral, but not close to the water surface, grazing increased the density of filamentous brown algae while reducing the green alga Cladophora glomerata. In these taxa, grazing effects were strongest in patches colonized during the early growing season. Grazing at the colonization stage had lasting consequences for the density of several individual species.  相似文献   

19.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

20.
An initially uniform Holcus lanatus-dominated sward came partly under hay-making and partly under sheep-grazing. Preferential grazing by sheep resulted in grazing at different intensities giving rise to a macro-pattern of various plant communities. Besides this macro-pattern a micro-pattern developed in the grazed area, which was absent under hay-making. In the micro-pattern short, heavily grazed areas alternated with taller, lightly grazed patches, both having the same species composition. The heavily grazed area was characterized by equal amounts of monocots and dicots. The lightly grazed patches were dominated by Agrostis tenuis, and had a large amount of litter which probably causes the absence of mosses. The protein percentage of green material is higher in the heavily grazed areas than in the lightly grazed patches.Sequential charting indicated that the micro-pattern was more or less stable. An interaction between the vegetation micro-pattern and grazing patterns is suggested. Heavy grazing results in forage with a high protein content and hence attracts animals. Light grazing results in forage with a relatively low protein content, animals avoid the area and litter accumulates.Nomenclature follows Heukels & van Ooststroom (1977) Flora van Nederland.Mrs J. O'Brien corrected the English text  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号