首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of casein kinase II   总被引:5,自引:0,他引:5  
E Palen  J A Traugh 《Biochemistry》1991,30(22):5586-5590
Casein kinase II from rabbit reticulocytes is a tetramer with an alpha,alpha' beta 2 or alpha 2 beta 2 structure; the alpha subunits contain the catalytic activity, and the beta subunits are regulatory in nature [Traugh, J.A., Lin, W. J., Takada-Axelrod, F., & Tuazon, P. T. (1990) Adv. Second Messenger Phosphoprotein Res. 24, 224-229]. When casein kinase II is isolated from rabbit reticulocytes by a rapid two-step purification of the enzyme, both the alpha and beta subunits are phosphorylated to a significant extent. In vitro, purified casein kinase II undergoes autophosphorylation on the beta subunit. In the presence of polylysine and polyarginine, phosphorylation of the beta subunits is inhibited, and the alpha subunits (alpha and alpha') become autophosphorylated. The effectiveness of polylysine coincides with the molecular weight. With basic proteins, including a number of histones and protamine, autophosphorylation of both subunits is observed. With histones, autophosphorylation of each subunit can be greater than that observed with the autophosphorylated enzyme alone or with a basic polypeptide. Thus, the potential exists for modulatory proteins to alter the autophosphorylation state of casein kinase II. Taken together, the data suggest that phosphorylation of the alpha subunit of casein kinase II in vivo may be due to an unidentified protein kinase or due to autophosphorylation. In the latter instance, casein kinase II could be transiently associated with specific intracellular compounds, such as basic proteins, with a resultant stimulation of autophosphorylation.  相似文献   

2.
Incubation of tryptophanyl-tRNA synthetase from bovine pancrease with [gamma-32P]ATP of [gamma-32P]GTP and casein kinase II from rabbit liver leads to the incorporation of labeled phosphate into serine residues of synthetase polypeptide. The maximal level of 32P incorporation into synthetase polypeptide (Mr = 60 kDa) 0.15 moles of 32P per 1 mole of polypeptide was observed. Electrophoretic analysis according to O'Farrell showed that kinase phosphorylates exclusively the most acidic polypeptides (pI 4.9) of the synthetase preparation. Pretreatment of synthetase with animal acidic and alkaline phosphatases had no influence on the level of 32P incorporation in synthetase during subsequent incubation in the presence of casein kinase II.  相似文献   

3.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

4.
Rat brain type II (beta) protein kinase C (PKC) was phosphorylated by rat lung casein kinase II (CK-II). Neither type I (gamma) nor type III (alpha) PKC was significantly phosphorylated by CK-II. CK-II incorporated 0.2-0.3 mol of phosphate into 1 mol of type II PKC. This phosphate was located at the single seryl residue (Ser-11) in the V1-variable region of the regulatory domain of the PKC molecule. A glutamic acid cluster was located at the carboxyl-terminal side of Ser-11, showing the consensus sequence for phosphorylation by CK-II. The velocity of this phosphorylation was enhanced by the addition of Ca2+, diolein, and phosphatidylserine, which are all required for the activation of PKC. Phosphorylation of casein or synthetic oligopeptides by CK-II was not affected by Ca2+, diolein, or phosphatidylserine. Available evidence suggests that CK-II phosphorylates preferentially the activated form of type II PKC. It remains unknown, however, whether this reaction has a physiological significance.  相似文献   

5.
Sun Z  Ren H  Liu Y  Teeling JL  Gu J 《Journal of virology》2011,85(2):1036-1047
RIG-I is an intracellular RNA virus sensor that mediates a signaling pathway that triggers the alpha/beta interferon (IFN-α/β) immune defenses. However, the mechanism for regulation of RIG-I activity remains largely unknown. Here we show that RIG-I activity is regulated by phosphorylation and dephosphorylation in its repressor domain (RD). Threonine at amino acid (aa) 770 and serine at aa 854 to 855 of RIG-I are phosphorylated by casein kinase II (CK2) in the resting state of the cell and dephosphorylated when cells are infected by RNA virus. Mutation at aa position 770 or 854 to 855 of RIG-I renders it constitutively active. Pharmacological inhibition of CK2 enhances virus-induced expression of IFN-β and suppresses virus proliferation, while inhibition of phosphatase reduces virus-induced expression of IFN-β. Overexpression of CK2 suppresses RIG-I-mediated signaling, while silencing of CK2 results in the increased suppression of virus proliferation. Our results reveal a novel mechanism of the regulation of RIG-I activity during RNA virus infection.  相似文献   

6.
Phosphorylation of high mobility group protein 14 by casein kinase II   总被引:7,自引:0,他引:7  
Phosphorylation of chromosomal high mobility group (HMG) protein 14 by casein kinase II has been characterized. Two mol of 32P are incorporated per mol of bovine HMG 14. Kinetic analysis provided evidence for two distinct sites with apparent Km values of 14.5 and 134 microM and respective Vmax values of 0.17 and 0.68 mumol/min/mg casein kinase II. Tryptic peptide mapping identified two phosphorylated products, each with phosphoserine. Amino acid composition and sequence analysis demonstrate that the major high affinity phosphorylation site for casein kinase II is serine 89. This sequence located at the carboxyl-terminal of HMG 14 contains the primary sequence determinants for casein kinase II. On the basis of reverse-phase high performance liquid chromatography and amino acid analysis, HMG 14, serine 99 represents the low affinity phosphorylation site.  相似文献   

7.
Phosphorylation of fibrinogen by casein kinase 1   总被引:3,自引:0,他引:3  
Casein kinase 1 phosphorylated human fibrinogen, in a reaction that did not use GTP as phosphoryl donor and was neither stimulated by cyclic AMP or Ca2+, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. Maximal incorporation averaged 4 mol of phosphate per mol of fibrinogen, most of it in the largest CNBr-fragment of the alpha-chain. Phosphoamino acid analysis revealed that phosphorylation occurred only at seryl residues. The phosphorylation of fibrinogen by casein kinase 1 was reverted by alkaline phosphatase.  相似文献   

8.
9.
Casein kinase II and ornithine decarboxylase were purified from a virally-transformed macrophage-like cell line, RAW264. The addition of casein kinase II to a reaction mixture containing [tau-32P]GTP, Mg++, and ornithine decarboxylase led to the phosphorylation of a 55,000 dalton protein band in the purified preparation of ornithine decarboxylase. Stoichiometric estimates indicated that casein kinase II incorporated 0.15 mole of phosphate per mole of ornithine decarboxylase, which was increased to 0.3 mole/per mole in the presence of spermine. The apparent Km and Vmax values for the casein kinase II-mediated phosphorylation of ornithine decarboxylase were 0.36 microM and 62.5 nmol/min./mg kinase. The addition of spermine to the reaction did not alter the Km but increased the Vmax to 100 nmol/min./mg kinase. The phosphorylation of ornithine decarboxylase by casein kinase II affected neither the rate of maximal ornithine decarboxylase activity nor the affinity of the enzyme for ornithine.  相似文献   

10.
The discovery of an homolog of the human centromeric protein B, CENP-B, in an EST database of the holocentric insect species Spodoptera frugiperda prompted us to further characterize that gene because i) CENP-B has not been described in invertebrates yet ii) it should be a milestone in the molecular characterization of the holocentric centromere of Lepidoptera.Like its human counterpart, the Sf CENP-B protein is related to the transposase of the pogo transposable element (TE) of D. melanogaster. In this paper, we show evidences that the lepidopteran cenpB gene has evolved from domestication of a transposase. Furthermore, the Sf CENP-B nuclear location and its ability to bind to a retrotransposon derived sequence in vivo argue in favor of a functional homology to CENP-B proteins.  相似文献   

11.
Phosphorylation of the insulin receptor by casein kinase I   总被引:1,自引:0,他引:1  
Insulin receptor was examined as a substrate for the multipotential protein kinase casein kinase I. Casein kinase I phosphorylated partially purified insulin receptor from human placenta as shown by immunoprecipitation of the complex with antiserum to the insulin receptor. Analysis of the phosphorylated complex by polyacrylamide gel electrophoresis under nonreducing conditions showed a major phosphorylated band at the position of the alpha 2 beta 2 complex. When the phosphorylated receptor was analyzed on polyacrylamide gels under reducing conditions, two phosphorylated bands, Mr 95,000 and Mr 135,000, were observed which corresponded to the alpha and beta subunits. The majority of the phosphate was associated with the beta subunit with minor phosphorylation of the alpha subunit. Phosphoamino acid analysis revealed that casein kinase I phosphorylated only seryl residues. The autophosphorylated alpha 2 beta 2 receptor purified by affinity chromatography on immobilized O-phosphotyrosyl binding antibody was also a substrate for casein kinase I. Reduction of the phosphorylated alpha 2 beta 2 receptor indicated that casein kinase I incorporated phosphate into seryl residues only in the beta subunit.  相似文献   

12.
13.
Casein kinase 2 from rat liver cytosol phosphorylated human fibrinogen in a reaction that was not stimulated by Ca2+ or cyclic AMP, but was markedly inhibited by heparin, and proceeded at a similar rate when either ATP or GTP was used as phosphate donor. Analysis of casein kinase 2 by glycerol-density-gradient centrifugation showed that the activities towards fibrinogen, casein, phosvitin, high-mobility-group protein 14 and glycogen synthase coincided. Maximal incorporation into fibrinogen by casein kinase 2 averaged 1 mol of phosphate/mol of protein substrate, most of it in the alpha-chain, although some phosphorylation of the beta-chain was also detected. Analysis of phosphorylated alpha-chain revealed that most of the phosphate was incorporated on serine. Phosphorylation of human fibrinogen was also performed by casein kinase 2 from human polymorphonuclear leucocytes, lymphocytes and platelets.  相似文献   

14.
A phosphorylated analogue of DSIP at Ser7 has been shown to exist endogenously by immunochemical studies. An enzyme which could phosphorylate DSIP has not yet been identified. In the present study, we examined DSIP as a substrate for in vitro phosphorylation by casein kinase II. DSIP was phosphorylated by the enzyme with apparent Km and Vmax values of 20 mM and 90.9 nmol/min/mg protein, respectively. Both ATP and GTP were utilized as phosphoryl donors. Phosphorylation of DSIP was inhibited by heparin and enhanced by spermine. These results demonstrate that DSIP can serve as a possible substrate for casein kinase II in vitro.  相似文献   

15.
The catalytic subunit of rabbit muscle cyclic AMP-dependent protein kinase (EC 2.7.1.37; ATP:protein transferase) has been tested on a variety of caseins. The B variant of β-casein was phosphorylated at a much greater rate than other β-caseins, αs1-caseins, and κ-caseins. Whole casein homozygous for β-casein B was phosphorylated at 2.5 times the rate of commercial whole casein. Gel electrophoresis experiments indicate that β-casein is the predominant component phosphorylated in commerical casein. It is therefore suggested that phosphorylation of whole casein depends on its content of the specific genetic variant, β-casein B.  相似文献   

16.
Because phosphorylation of protein kinase C (PKC) may provide a mechanism for regulation of this enzyme, we have examined the ability of two other kinases to phosphorylate PKC. Our results show that casein kinase 1 (CK-1), but not casein kinase 2 (CK-2), can phosphorylate PKC in the absence of Ca2+ and phospholipids. The 32P incorporation into PKC in the presence of Ca2+ and phospholipids is also enhanced by CK-1.  相似文献   

17.
Incubation of clathrin-coated vesicles with Mg2+-[gamma-32P]ATP results in the autophosphorylation of a 50-kDa polypeptide (pp50) (Pauloin, A., Bernier, I., and Jollès, P. (1982) Nature 298, 574-576). We describe here a second protein kinase that is associated with calf brain and liver coated vesicles. This kinase, which phosphorylates casein and phosvitin but not histone and protamine using either ATP or GTP, co-fractionates with coated vesicles as assayed by gel filtration, electrophoresis, and sedimentation. The enzyme can be extracted with 0.5 M Tris-HCl or 1 M NaCl, and can be separated from the pp50 kinase as well as the other major coat proteins. We identified this enzyme as casein kinase II based on physical and catalytic properties and by comparative studies with casein kinase II isolated from brain cytosol. It has a Stokes radius of 4.5 nm, a catalytic moiety of approximately 45 kDa, and labels a polypeptide of 26 kDa when the pure enzyme is assayed for autophosphorylation. Its activity is inhibited by heparin and not affected by cAMP, phospholipids, or calmodulin. This protein kinase preferentially phosphorylates clathrin beta-light chain. The phosphorylation is markedly stimulated by polylysine and inhibited by heparin. Isolated beta-light chain as well as beta-light chain in triskelions or in intact coated vesicles is phosphorylated. All of the phosphate (0.86 mol of Pi/mol of clathrin beta-light chain) is incorporated into phosphoserine.  相似文献   

18.
Regulation of Drosophila TRPL channels by immunophilin FKBP59   总被引:4,自引:0,他引:4  
Transient receptor potential and transient receptor potential-like (TRPL) are Ca(2+)-permeable cation channels found in Drosophila photoreceptor cells associated with large multimeric signaling complexes held together by the scaffolding protein, INAD. To identify novel proteins involved in channel regulation, Drosophila INAD was used as bait in a yeast two-hybrid screen of a Drosophila head cDNA library. Sequence analysis of one identified clone showed it to be identical to the Drosophila homolog of human FK506-binding protein, FKBP52 (previously known as FKBP59). To determine the function of dFKBP59, TRPL channels and dFKBP59 were co-expressed in Sf9 cells. Expression of dFKBP59 produced an inhibition of Ca(2+) influx via TRPL in fura-2 assays. Likewise, purified recombinant dFKBP59 produced a graded inhibition of TRPL single channel activity in excised inside-out patches when added to the cytoplasmic membrane surface. Immunoprecipitations from Sf9 cell lysates using recombinant tagged dFKBP59 and TRPL showed that these proteins directly interact with each other and with INAD. Addition of FK506 prior to immunoprecipitation resulted in a temperature-dependent dissociation of dFKBP59 and TRPL. Immunoprecipitations from Drosophila S2 cells and from fly head lysates demonstrated that dFKBP59, but not dFKBP12, interacts with TRPL in vivo. Likewise, INAD immunoprecipitates with dFKBP59 from S2 cell and head lysates. Immunocytochemical evaluation of thin sections of fly heads revealed specific FKBP immunoreactivity associated with the eye. Site-directed mutagenesis showed that mutations of P702Q or P709Q in the highly conserved TRPL sequence (701)LPPPFNVLP(709) eliminated interaction of the TRPL with dFKBP59. These results provide strong support for the hypothesis that immunophilin dFKBP59 is part of the TRPL-INAD signaling complex and plays an important role in modulation of channel activity via interaction with conserved leucyl-prolyl dipeptides located near the cytoplasmic mouth of the channel.  相似文献   

19.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

20.
Phosphorylation and regulation of beta-catenin by casein kinase I epsilon   总被引:2,自引:0,他引:2  
beta-Catenin transduces cytosolic signals to the nucleus in the Wnt pathway. The Wnt ligand stabilizes cytosolic beta-catenin protein, preventing its phosphorylation by inhibiting glycogen synthase kinase 3 (GSK3). Serine-33 and -37 of beta-catenin are GSK3 phosphorylation sites that serve as recognition sites for the beta-TRCP-ubiquitin ligase complex, which ultimately triggers beta-catenin degradation. Mutations at those two sites, as well as in Ser-45, stabilize beta-catenin. Recently, casein kinase I epsilon (CKI epsilon) has been shown to be a positive regulator of the Wnt pathway. Its action mechanism, however, remains unknown. Here I show that Ser-45 is phosphorylated not by GSK3 but by CKI epsilon. Axin, a scaffold protein that binds CKI epsilon and beta-catenin, enhances this CKI epsilon-mediated phosphorylation. Overexpression of CKI epsilon in cells increases the amount of beta-catenin phosphorylated at Ser-45. Ser-45 phosphorylated beta-catenin is a better substrate for GSK3, which suggests that CKI epsilon and GSK3 may co-operate in destabilizing beta-catenin. In spite of the fact that CKI epsilon was found as a positive regulator of the Wnt pathway, mutational analysis suggests that mutation of Ser-45 regulates beta-catenin stability by inhibiting the ability of GSK3 to phosphorylate Ser-33 and -37, thereby disrupting the interaction between beta-catenin, beta-TRCP and Axin. I propose that phosphorylation of Ser-45 by CKI epsilon plays an important role in regulating beta-catenin stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号