首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new speciesTorulopsis mogii is proposed as a substitute for the seven following, invalidly describedTorulopsis species:T. miso β, T. miso β var. 2,T. miso γ, T. miso γ var. 1,T. miso ζ, T. miso η by Mogi (1938, 1942) andT. osloensis by Dietrichson (1954).  相似文献   

2.
Overproduction of livestock manures with unpleasant odors causes significant environmental problems. The microbial fermentation bed (MFB) system is considered an effective approach to recycling utilization of agricultural byproducts and pig manure (PM). To gain a better understanding of bacterial communities present during the degradation of PM in MFB, the PM bacterial community was evaluated at different fermentation stages using 16S rRNA high throughput sequencing technology. The heatmap plot clustered five samples into short-term fermentation stage of 0–10 days and long-term fermentation stage of 15–20 days. The most abundant OTUs at the phylum level were Firmicutes, Actinobacteria and Proteobacteria in the long-term fermentation stage of PM, whereas Firmicutes, Bacteroidetes, and Proteobacteria predominated in the short-term fermentation stage of PM. At the genus level, organic degradation strains, such as Corynebacterium, Bacillus, Virgibacillus, Pseudomonas, Actinobacteria, Lactobacillus, Pediococcus were the predominate genera at the long-term fermentation stage, but were found only rarely in the short-term fermentation stage. C/N ratios increased and the concentration of the unpleasant odor substance 3-hydroxy-5-methylisoxazole (3-MI) decreased with prolonged period of fermentation. Redundancy analysis (RDA) demonstrated that the relative abundance of Firmicutes, Actinobacteria, Acidobacteria and Proteobacteria had a close relationship with degradation of 3-MI and increasing C/N ratio. These results provide valuable additional information about bacterial community composition during PM biodegradation in animal husbandry.  相似文献   

3.
Paocai is a traditional Chinese fermented food and typically produced via spontaneous fermentation. We have investigated the microbial community utilized for the fermentation of industrialized Qingcai paocai using the combination of Illumina MiSeq sequencing, PCR-mediated denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR (qPCR) assay. Three main phyla, namely Firmicutes, Proteobacteria and Bacteroidetes, were identified by both MiSeq sequencing and PCR-DGGE. The dominant genera observed in the fermentation were Lactobacillus, Pseudomonas, Vibrio and Halomonas. Most genera affiliated with Proteobacteria or Bacteroidetes were detected more often during the earlier part of the fermentation, while Lactobacillus (affiliated with Firmicutes) was dominant during the later fermentation stages. Fungal community analysis revealed that Debaryomyces, Pichia and Kazachstania were the main fungal genera present in industrialized Qingcai paocai, with Debaryomyces being the most dominant during the fermentation process. The quantities of dominant genera Lactobacillus and Debaryomyces were monitored using qPCR and shown to be 109–1012 and 106–1010 copies/mL, respectively. During the later fermentation process of industrialized Qingcai paocai, Lactobacillus and Debaryomyces were present at 1011 and 108 copies/mL, respectively. These results facilitate further understanding of the unique microbial ecosystem during the fermentation of industrialized Qingcai paocai and guide future improvement of the fermentation process.  相似文献   

4.
Gundruk is a fermented leafy vegetable and khalpi is a fermented cucumber product, prepared and consumed in the Himalayas. In situ fermentation dynamics during production of gundruk and khalpi was studied. Significant increase in population of lactic acid bacteria (LAB) was found during first few days of gundruk and khlapi fermentation, respectively. Gundruk fermentation was initiated by Lactobacillus brevis, Pediococcus pentosaceus and finally dominated by Lb. plantarum. Similarly in khalpi fermentation, heterofermentative LAB such as Leuconostoc fallax, Lb. brevis and P. pentosaceus initiated the fermentation and finally completed by Lb. plantarum. Attempts were made to produce gundruk and khalpi using mixed starter culture of LAB previously isolated from respective products. Both the products prepared under lab condition had scored higher sensory-rankings comparable to market products.  相似文献   

5.
Escherichia coli can hardly grow anaerobically on glycerol without exogenous electron acceptor. The formate-consuming methanogen Methanobacterium formicicum plays a role as a living electron acceptor in glycerol fermentation of E. coli. Wild-type and mutant E. coli strains were screened for succinate production using glycerol in a co-culture with M. formicicum. Subsequently, E. coli was adapted to glycerol fermentation over 39 rounds (273 days) by successive co-culture with M. formicicum. The adapted E. coli (19.9 mM) produced twice as much succinate as non-adapted E. coli (9.7 mM) and 62% more methane. This study demonstrated improved succinate production from waste glycerol using an adapted wild-type strain of E. coli with wild-type M. formicicum, which is more useful than genetically modified strains. Crude glycerol, an economical feedstock, was used for the cultivation. Furthermore, the increase in methane production by M. formicicum during co-culture with adapted E. coli illustrated the possibility of energy-saving effects for the fermentation process.  相似文献   

6.
The purpose of this work was to analyse the diversity and dynamics of lactic acid bacteria (LAB) throughout the fermentation process in Atole agrio, a traditional maize based food of Mexican origin. Samples of different fermentation times were analysed using culture-dependent and -independent approaches. Identification of LAB isolates revealed the presence of members of the genera Pediococcus, Weissella, Lactobacillus, Leuconostoc and Lactococcus, and the predominance of Pediococcus pentosaceus and Weissella confusa in liquid and solid batches, respectively. High-throughput sequencing (HTS) of the 16S rRNA gene confirmed the predominance of Lactobacillaceae and Leuconostocaceae at the beginning of the process. In liquid fermentation Acetobacteraceae dominate after 4 h as pH decreased. In contrast, Leuconostocaceae dominated the solid fermentation except at 12 h that were overgrown by Acetobacteraceae. Regarding LAB genera, Lactobacillus dominated the liquid fermentation except at 12 h when Weissella, Lactococcus and Streptococcus were the most abundant. In solid fermentation Weissella predominated all through the process. HTS determined that Lactobacillus plantarum and W. confusa dominated in the liquid and solid batches, respectively. Two oligotypes have been identified for L. plantarum and W. confusa populations, differing in a single nucleotide position each. Only one of the oligotypes was detected among the isolates obtained from each species, the biological significance of which remains unclear.  相似文献   

7.
Qishan vinegar is a typical Chinese fermented cereal product that is prepared using traditional solid-state fermentation (SSF) techniques. The final qualities of the vinegar produced are closely related to the multiple bacteria present during SSF. In the present study, the dynamics of microbial communities and their abundance in Daqu and vinegar Pei were investigated by the combination of high throughput sequencing and quantitative PCR. Results showed that the Enterobacteriales members accounted for 94.7%, 94.6%, and 92.2% of total bacterial sequences in Daqu Q3, Q5, and Q10, respectively. Conversely, Lactobacillales and Rhodospirillales dominated during the acetic acid fermentation (AAF) stage, corresponding to the quantitative PCR results. Lactobacillus, Acetobacter, Weissella, Leuconostoc and Bacillus were the dominant and characteristic bacterial genera of Qishan vinegar during AAF process. Redundancy analysis suggested that Lactobacillales and Rhodospirillales had a positive correlation with humidity and acidity, respectively. These results confirmed that the bacterial community structure could be affected by physiochemical factors, which determined the unique bacterial composition at different fermentation stages and showed batch-to-batch consistency and stability. Therefore, the conformity of bacterial community succession with physiochemical parameters guaranteed the final quality of Qishan vinegar products. This study provided a scientific perspective for the uniformity and stability of Qishan vinegar, and might aid in controlling the manufacturing process.  相似文献   

8.
Da-jiang is the traditional soybean fermented food which is popular in the world for a long time. In order to improve the quality and nutritional value of da-jiang, structure and diversity of bacterial communities in the fermentation of da-jiang were analyzed. Illumina MiSeq platforms coupled with bioinformatics approach were used in this study. In the first 28 days, the trends of bacterial abundance were similar in different regions which are increasing firstly, decreasing secondly, and rising again. The quantity of bacteria in post-fermentation is lower than pre-fermentation. In the fermentation of da-jiang, Firmicutes and Proteobacteria are the dominant phyla. The dominant genera in da-jiang from different regions are different: Tetragenococcus (58.1–73.0%) is the dominant genus in da-jiang from Xinmin; Leuconostoc (9.2–25.7%) is the dominant genus in da-jiang from Tieling; Acinetobacter (8.7–25.1%) and Leuconostoc (12.4–22.0%) are the dominant genera in da-jiang from Shenyang. Additionally, Weissella, Lactobacillus, Staphylococcus, Erwinia, and Pseudomonas also were found in da-jiang. It is identified that Leuconostoc steadily existed in all da-jiang samples. These results demonstrate the diversity of microbes in traditional fermented da-jiang, which will probably provide a data basis for choosing starter culture for da-jiang industrial fermentation.  相似文献   

9.
Escherichia coli FB-04(pta1), a recombinant l-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (l-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key l-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher l-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, l-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g?1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.  相似文献   

10.
The objective of this study was to evaluate ethanol production and bioadsorption with four red seaweeds, Gelidium amansii, Gracilaria verrucosa, Kappaphycus alvarezii and Eucheuma denticulatum. To produce ethanol, thermal acid hydrolysis, enzymatic saccharification and fermentation was carried out. After pretreatment, 38.5, 39.9, 31.0 and 27.5 g/L of monosaccharides were obtained from G. amansii, G. verrucosa, K. alvarezii and E. denticulatum, respectively. Ethanol fermentation was performed with Saccharomyces cerevisiae KCCM 1129 adapted to 80 g/L galactose. The ethanol productions by G. amansii, G. verrucosa, K. alvarezii and E. denticulatum were 18.8 g/L with Y EtOH = 0.49, 19.1 g/L with Y EtOH = 0.48, 14.5 g/L with Y EtOH = 0.47 and 13.0 g/L with Y EtOH = 0.47, respectively. The waste seaweed slurries after the ethanol fermentation were reused to adsorb Cd(II), Pb(II) and Cu(II). Using langmuir isotherm model, Cu(II) had the highest affinity for waste seaweeds with the highest q max and electronegativity values among three heavy metals.  相似文献   

11.
The cecum plays an important role in the feed fermentation of ruminants. However, information is very limited regarding the cecal microbiota and their methane production. In the present study, the cecal content from twelve local Chinese goats, fed with either a hay diet (0% grain) or a high-grain diet (71.5% grain), were used to investigate the bacterial and archaeal community and their methanogenic potential. Microbial community analysis was determined using high-throughput sequencing of 16S rRNA genes and real-time PCR, and the methanogenesis potential was assessed by in vitro fermentation with ground corn or hay as substrates. Compared with the hay group, the high-grain diet significantly increased the length and weight of the cecum, the proportions of starch and crude protein, the concentrations of volatile fatty acids and ammonia nitrogen, but decreased the pH values (P?<?0.05). The high-grain diet significantly increased the abundances of bacteria and archaea (P?<?0.05) and altered their community. For the bacterial community, the genera Bifidobacterium, Prevotella, and Treponema were significantly increased in the high-grain group (P?<?0.05), while Akkermansia, Oscillospira, and Coprococcus were significantly decreased (P?<?0.05). For the archaeal community, Methanosphaera stadtmanae was significantly increased in the high-grain group (P?<?0.05), while Methanosphaera sp. ISO3-F5 was significantly decreased (P?<?0.05). In the in vitro fermentation with grain as substrate, the cecal microorganisms from the high-grain group produced a significantly higher amount of methane and volatile fatty acids (P?<?0.05), and produced significantly lower amount of lactate (P?<?0.05). Conclusively, high-grain diet led to more fermentable substrates flowing into the hindgut of goats, resulting in an enhancement of microbial fermentation and methane production in the cecum.  相似文献   

12.
The alcoholic fermentation for fuel ethanol production in Brazil occurs in the presence of several microorganisms present with the starter strain of Saccharomyces cerevisiae in sugarcane musts. It is expected that a multitude of microbial interactions may exist and impact on the fermentation yield. The yeast Dekkera bruxellensis and the bacterium Lactobacillus fermentum are important and frequent contaminants of industrial processes, although reports on the effects of both microorganisms simultaneously in ethanolic fermentation are scarce. The aim of this work was to determine the effects and interactions of both contaminants on the ethanolic fermentation carried out by the industrial yeast S. cerevisiae PE-2 in two different feedstocks (sugarcane juice and molasses) by running multiple batch fermentations with the starter yeast in pure or co-cultures with D. bruxellensis and/or L. fermentum. The fermentations contaminated with D. bruxellensis or L. fermentum or both together resulted in a lower average yield of ethanol, but it was higher in molasses than that of sugarcane juice. The decrease in the CFU number of S. cerevisiae was verified only in co-cultures with both D. bruxellensis and L. fermentum concomitant with higher residual sucrose concentration, lower glycerol and organic acid production in spite of a high reduction in the medium pH in both feedstocks. The growth of D. bruxellensis was stimulated in the presence of L. fermentum resulting in a more pronounced effect on the fermentation parameters than the effects of contamination by each microorganism individually.  相似文献   

13.
14.
When exposed to mixtures of glucose and fructose, as occurs during the fermentation of grape juice into wine, Saccharomyces cerevisiae uses these sugars at different rates. Moreover, glucose and fructose are transported by the same hexose transporters (HXT), which present a greater affinity for glucose, so that late in fermentation, fructose becomes the predominant sugar. Only a few commercial fermentation activators are available to optimally solve the problems this entails. The aim of this study was to investigate the relation between HXT3 gene expression and fructose/glucose discrepancy in two different media inoculated with a commercial wine strain of S. cerevisiae in the presence of three metabolic activators. Fermentation kinetics, vitality and major metabolites were also measured. Rehydration with ergosterol improved the area under the curve and the growth rate (µ max ) in both studied media. Also, the fructose/glucose discrepancy values were improved with all activator treatments, highlighting rehydration in the presence of ascorbic acid. The yeast rehydration process was demonstrated to influence HXT3 expression under the studied conditions. Tetrahydrofolic acid treatment greatly influenced HXT3 gene expression, especially on the 12th day of the fermentation process. To a lesser extent, ergosterol and ascorbic acid also improved this parameter.  相似文献   

15.
In a previous study, the synbiotic combination of selected Lactobacillus gasseri strains and Cudrania tricuspidata leaf extract (CT) was shown to significantly improve the functionality of fermented milk, and the greatest synbiotic effect was exhibited with L. gasseri 505. The aim of the present study was to investigate the growth kinetics and fermentation metabolism of this specific synbiotic combination. Fermentation was carried out in synthetic media and milk with or without CT supplementation using L. gasseri 505. Whole genome sequencing and comparative genomics analyses were conducted to verify the novelty of strain. Titratable acidity, pH, microbial population, and organic acid production were measured during the fermentation period. The addition of CT accelerated the acidification rate, supporting the growth of L. gasseri 505, and the production of fermentation metabolites such as lactic acid and pyruvic acid also significantly increased during fermentation of both of CT-supplemented synthetic media and milk. In particular, the formic acid and propionic acid in CT were significantly utilized during fermentation of milk by L. gasseri 505. Moreover, the antioxidant capacity of CT-supplemented fermented milk increased due to the release of bioactive compounds until the exponential growth phase, after which the antioxidant activity declined due to degradation and loss of potency. Therefore, this study established that L. gasseri 505 efficiently utilized the CT-related nutrients during fermentation producing resulting metabolites with health-promoting effects, although it is necessary to control the fermentation time to obtain dairy products with optimum functionality.  相似文献   

16.
Lignocellulose-derived microbial inhibitors (LDMICs) prevent efficient fermentation of Miscanthus giganteus (MG) hydrolysates to fuels and chemicals. To address this problem, we explored detoxification of pretreated MG biomass by Cupriavidus basilensis ATCC®BAA-699 prior to enzymatic saccharification. We document three key findings from our test of this strategy to alleviate LDMIC-mediated toxicity on Clostridium beijerinckii NCIMB 8052 during fermentation of MG hydrolysates. First, we demonstrate that growth of C. basilensis is possible on furfural, 5-hydroxymethyfurfural, cinnamaldehyde, 4-hydroxybenzaldehyde, syringaldehyde, vanillin, and ferulic, p-coumaric, syringic and vanillic acid, as sole carbon sources. Second, we report that C. basilensis detoxified and metabolized ~98 % LDMICs present in dilute acid-pretreated MG hydrolysates. Last, this bioabatement resulted in significant payoffs during acetone-butanol-ethanol (ABE) fermentation by C. beijerinckii: 70, 50 and 73 % improvement in ABE concentration, yield and productivity, respectively. Together, our results show that biological detoxification of acid-pretreated MG hydrolysates prior to fermentation is feasible and beneficial.  相似文献   

17.
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.  相似文献   

18.
Oxygen is sometimes deliberately introduced in winemaking at various stages to enhance yeast biomass formation and prevent stuck fermentation. However, there is limited information on how such interventions affect the dynamics of yeast populations. Our previous study in synthetic grape juice showed that oxygen supply enhances the persistence of Lachancea thermotolerans, Torulaspora delbrueckii and Metschnikowia pulcherrima. The three non-Saccharomyces yeasts showed differences in growth as a function of oxygen. The present study focused on evaluating the influence of short oxygen pulses on population dynamics and the aroma profile of Chardonnay wine inoculated with L. thermotolerans and Saccharomyces cerevisiae. The results confirmed a positive effect of oxygen on the relative performance of L. thermotolerans. The mixed culture fermentation with L. thermotolerans with S. cerevisiae developed a distinct aroma profile when compared to monoculture S. cerevisiae. Specifically, a high concentration of esters, medium chain fatty acids and higher alcohols was detected in the mixed culture fermentation. The data also showed that the longer persistence of L. thermotolerans due to addition of oxygen pulses influenced the formation of major volatile compounds such as ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl caprylate, ethyl caprate, ethyl-3-hydroxybutanoate, ethyl phenylacetate, propanol, isobutanol, butanol, isoamyl alcohol, hexanol, isobutyric acid, butyric acid, iso-valeric acid, hexanoic acid, octanoic acid, and decanoic acid.  相似文献   

19.
The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production.  相似文献   

20.
Butanol-producing microorganisms are all obligate anaerobes. In this study, a unique symbiotic system TSH06 was isolated to be capable of producing butanol under non-anaerobic condition. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) revealed that two strains coexist in TSH06. The two strains were identical to Clostridium acetobutylicum and Bacillus cereus, respectively. They were isolated individually and named as C. acetobutylicum TSH1 and B. cereus TSH2. C. acetobutylicum TSH1 is a butanol-producing, obligate anaerobic strain. Facultative anaerobic B. cereus TSH2 did not possess the ability of butanol production; however, it offered C. acetobutylicum TSH1 the viability under non-anaerobic condition. Moreover, B. cereus TSH2 enhanced butanol yield and speed of fermentation. TSH06 produced 12.97 g/L butanol and 15.39 g/L total solvent under non-anaerobic condition, which is 25 and 24 %, respectively, higher than those of C. acetobutylicum TSH1. In addition, TSH06 produced butanol faster under non-anaerobic condition than under anaerobic condition. Butanol accounted for more than 80 % of total solvent, which is higher than the known report. TSH06 was stable during passage. In all, TSH06 is a promising candidate for industrialisation of biobutanol with high yield, high butanol proportion, easy-handling and time-saving system. These results demonstrated the potential advantage of symbiosis. This study also provides a promising strategy for butanol fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号