首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Several studies have indicated that CYP2C19 loss-of-function polymorphisms have a higher risk of stent thrombosis (ST) after percutaneous coronary interventions (PCIs). However, this association has not been investigated thoroughly in a Chinese population. In this study, we aimed to determine the effect of CYP2C19*2 and CYP2C19*3 loss-of-function polymorphisms on the occurrence of ST and other adverse clinical events in a Chinese population.

Methods

We designed a cohort study among 1068 consecutive patients undergoing intracoronary stent implantation after preloading with 600 mg of clopidogrel. CYP2C19*2 and CYP2C19*3 were genotyped by using polymerase chain reaction-restriction fragment length polymorphism analysis. The adverse clinical events recorded were ST, death, myocardial infarction (MI), and bleeding events. The primary end point of the study was the incidence of cumulative ST within 1 year after PCI. The secondary end point was other adverse clinical outcomes 1 year after the procedure.

Results

The cumulative 1-year incidence of ST was 0.88% in patients with extensive metabolizers (EMs) (CYP2C19*1/*1 genotype), 4.67% in patients with intermediate metabolizers (IMs) (CYP2C19*1/*2 or *1/*3 genotype), and 10.0% in patients with poor metabolizers (PMs) (CYP2C19*2/*2, *2/*3, or *3/*3 genotype) (P<0.001). The one-year event-free survival was 97.8% in patients with EMs, 96.5% in patients with IMs, and 92.0% in patients with PMs (P = 0.014). Multivariate analysis confirmed the independent association of CYP2C19 loss-of-function allele carriage with ST (P = 0.009) and total mortality (P<0.05).

Conclusion

PM patients had an increased risk of ST, death, and MI after coronary stent placement in a Chinese population.  相似文献   

2.
目的:观察细胞色素P450系统药物代谢酶CYP2C19基因多态性以及相关临床因素对氯吡格雷抵抗的影响。方法:选择2010年11月至2011年5月我科拟行PCI术治疗的冠心病患者共145例,均给予氯吡格雷300mg负荷剂量,75mg维持剂量。①通过流式细胞仪检测血管舒张因子刺激酸磷蛋白血小板反应性指数VASP PRI(以VASP PRI≥50%,定义为氯吡格雷抵抗)分为氯吡格雷抵抗组和氯吡格雷反应组。②检测入选患者的药物代谢酶CYP2C19的基因型;根据不同等位基因功能缺失,分为快代谢基因型(*1/*1)、中间代谢基因型(*1/*2、*1/*3)和慢代谢基因型(*2/*2、*2/*3、*3/*3)。③观察CYP2C19基因型及相关临床危险因素对氯吡格雷反应性的影响,④观察氯吡格雷抵抗与临床不良终点事件主要临床不良终点事件[心源性死亡、再发心肌梗死、靶病变再次血运重建术(TLR)]和次要临床终点事件(支架内血栓形成、脑血管意外、大出血)之间的相关性。结果:检测出氯吡格雷抵抗的患者31例,其发生率为20.67%;检测出CYP2C19慢代谢基因型携带患者19例,所占比例为12.67%。慢代谢基因型患者与(快代谢基因型+中间代谢基因型患者)之间VASP PRI比为(49.20±8.45)%VS(44.17±5.41)%,P<0.05,氯吡格雷抵抗发生率之比为35.49%(n=11)VS16.81%(n=20),P<0.05。多元回归分析提示CYP2C19慢代谢基因型(OR:4.43;95%CI:3.28-8.37,P<0.05)和2型糖尿病(OR:2.76;95%CI:2.13-6.14;P<0.05)是氯吡格雷抵抗的两种危险因素。临床随访结果显示氯吡格雷抵抗组与氯吡格雷反应组主要临床不良终点事件的发生率比为6.45%(n=2)vs2.63%(n=3),P<0.05。结论:携带CPY2C19慢代谢基因型和患有2型糖尿病是导致氯吡格雷抵抗的两种重要的危险因素,氯吡格雷抵抗的发生增加了临床不良终点事件的风险。  相似文献   

3.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

4.
Clopidogrel has been used to prevent recurrent ischemic events after acute coronary syndrome and/or coronary stent implantation. An impaired platelet response to this drug (residual high platelet reactivity) has been identified as a risk factor for recurrent ischemic events. The platelet response to clopidogrel is highly heritable (73%) suggesting a substantial genetic component. Two sequential cytochrome P450-dependent oxidative steps are required to convert clopidogrel to its active metabolite. The first step leads to the formation of 2-oxo-clopidogrel, which is then metabolized to the active metabolite. Cytochrome P450s are large highly polymorphic family of mono-oxygenases. Many alleles have been reported, and some of these are able to modify the activity of proteins, reducing or increasing the concentration of active metabolites and the drug effect. Loss-of-function variants in the hepatic cytochrome 2C19 (mainly *2 allele) system have been found to be the predominant genetic mediators of clopidogrel response. Variant carriers have higher treatment platelet reactivity and higher risk of adverse cardiac events including stent thrombosis, myocardial infarction, and death. Although value of CYP2C19 genotyping has been demonstrated in ACS population treated with PCI, there is still a wide interindividual variability within each genotype to systematically advocate this genetic testing in clinical practice. The CYP2C19*2 variant only explained 12% of the platelet response to clopidogrel. In the near future, it is highly probable that additional gene variants or epigenetic phenomenon will emerge as significant contributors to clopidogrel response that will allow recommending genetic testing for routine use. The purpose of this review is to discuss the contribution of individual genetic differences responsible for variations of action and clopidogrel efficacy.  相似文献   

5.
Clopidogrel is one of the most frequently used drugs in patients to reduce cardiovascular events. Since patients with different genetic variations respond quite differently to clopidogrel therapy, the related genetic testing plays a vital role in its dosage and genetic testing related to clopidogrel therapy is currently considered as routine test worldwide. In this study, we aim to use two different methods MALDI-TOF mass spectrometry and pyrosequencing to detect gene variant of CYP2C19 and ABCB1. Six single nucleotides polymorphisms (SNP) within CYP2C19 (*2, *3, *4, *5, *17) and ABCB1 C3435T in 458 Chinese Han patients were determined using both MassARRAY and Pyrosequencing. Sanger sequencing was used for verification. Results of both methods were analyzed and compared. Allele frequencies of each SNP and distribution of different genotypes were calculated based on the MassARRAY and Sanger sequencing results. Both methods provided 100% call rates for gene variants, while results of six samples were different with two methods. With Sanger sequencing as the reference results, MassARRAY generated all the same results. The minor allele frequencies of the above six SNPs were 27.1% (CYP2C19*), 5.9% (CYP2C19*3), 0% (CYP2C19*4), 0% (CYP2C19*5), 1.1% (CYP2C19*17), 40.9% (ABCB1), respectively. MassARRAY provides accurate clopidogrel related genotyping with relatively high cost-efficiency, throughput and short time when compared with pyrosequencing.  相似文献   

6.
Patients with lesser degrees of platelet inhibition in response to clopidogrel appear to be at increased risk for recurrent ischemic events. Cytochrome P450 (CYP) polymorphisms have been proposed as possible mechanisms for nonresponsiveness to clopidogrel. Published data on the association between CYP2C19*2 polymorphism and atherothrombotic events are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. A total of eight prospective cohort studies including 2,345 patients carrying CYP2C19*2 variant allele and 5,935 cases with the wild-type genotype were included in this meta-analysis. Overall, borderline statistically significantly elevated risk of adverse clinical events was associated with genotyping 681G>A polymorphism (for AA + GA vs. GG: OR, 1.46; 95% CI, 1.01 to 2.13; P = 0.05). The summary odds ratio showed a significant association between the CYP2C19*2 polymorphism and an increased risk of cardiac mortality in the follow-up period (OR, 2.07; 95% CI, 1.22 to 3.52; P = 0.007). When studies evaluating myocadial infarction, stent thrombosis, and ischemic stroke, the presence of the variant allele was associated with significantly increased risks of recurrent atherothrombotic events. In summary, this meta-analysis indicated that CYP2C19*2 carrier status is significantly associated with an increased risk of adverse cardiovascular events.  相似文献   

7.
A single-nucleotide polymorphism (A6986G) in the cytochrome p-450 3A5 (CYP3A5) gene distinguishes an expressor (*1) and a reduced-expressor (*3) allele and largely predicts CYP3A5 content in liver and intestine. CYP3A5 is the prevailing CYP3A isoform in kidney. We report that, among renal microsomes from 21 organ donors, those from *1/*3 individuals had at least eightfold higher mean kidney microsomal CYP3A5 content and 18-fold higher mean CYP3A catalytic activity than did those from *3/*3 individuals (P = 0.0001 and P = 0.0137, respectively). We also report significant associations between the A6986G polymorphism and systolic blood pressure (P = 0.0007), mean arterial pressure (P = 0.0075), and creatinine clearance (P = 0.0035) among 25 healthy African-American adults. These associations remained significant when sex, age, and body mass index were taken into account. The mean systolic blood pressure of homozygous CYP3A5 expressors (*1/*1) exceeded that of homozygous nonexpressors (*3/*3) by 19.3 mmHg. We speculate whether a high CYP3A5 expressor allele frequency among African-Americans may contribute to a high prevalence of sodium-sensitive hypertension in this population.  相似文献   

8.
Clopidogrel and aspirin are among the most prescribed dual antiplatelet therapies to treat the acute coronary syndrome and heart attacks. However, their potential clinical impacts are a subject of intense debates. The therapeutic efficiency of clopidogrel is controlled by the actions of hepatic cytochrome P450 (CYPs) enzymes and impacted by individual genetic variations. Inter-individual polymorphisms in CYPs enzymes affect the metabolism of clopidogrel into its active metabolites and, therefore, modify its turnover and clinical outcome. So far, clinical trials fail to confirm higher or lower adverse cardiovascular effects in patients treated with combinations of clopidogrel and proton pump inhibitors, compared with clopidogrel alone. Such inconclusive findings may be due to genetic variations in the cytochromes CYP2C19 and CYP3A4/5. To investigate potential interactions/effects of these cytochromes and their allele variants on the treatment of acute coronary syndrome with clopidogrel alone or in combination with proton pump inhibitors, we analyze recent literature and discuss the potential impact of the cytochrome allelic variants on cardiovascular events and stent thrombosis treated with clopidogrel. The diversity of CYP2C19 polymorphisms and prevalence span within various ethnic groups, subpopulations and demographic areas are also debated.  相似文献   

9.

Background

Pharmacogenetics contributes to inter-individual variability in pharmacokinetics (PK) of efavirenz (EFV), leading to variations in both efficacy and toxicity. The purpose of this study was to assess the effect of genetic factors on EFV pharmacokinetics, treatment outcomes and genotype based EFV dose recommendations for adult HIV-1 infected Ugandans.

Methods

In total, 556 steady-state plasma EFV concentrations from 99 HIV infected patients (64 female) treated with EFV/lamivudine/zidovidine were analyzed. Patient genotypes for CYP2B6 (*6 & *11), CYP3A5 (*3,*6 & *7) and ABCB1 c.4046A>G, baseline biochemistries and CD4 and viral load change from baseline were determined. A one-compartment population PK model with first-order absorption (NONMEM) was used to estimate genotype effects on EFV pharmacokinetics. PK simulations were performed based upon population genotype frequencies. Predicted AUCs were compared between the product label and simulations for doses of 300 mg, 450 mg, and 600 mg.

Results

EFV apparent clearance (CL/F) was 2.2 and 1.74 fold higher in CYP2B6*6 (*1/*1) and CYP2B6*6 (*1/*6) compared CYP2B6*6 (*6/*6) carriers, while a 22% increase in F1 was observed for carriers of ABCB1 c.4046A>G variant allele. Higher mean AUC was attained in CYP2B6 *6/*6 genotypes compared to CYP2B6 *1/*1 (p<0.0001). Simulation based AUCs for 600 mg doses were 1.25 and 2.10 times the product label mean AUC for the Ugandan population in general and CYP2B6*6/*6 genotypes respectively. Simulated exposures for EFV daily doses of 300 mg and 450 mg are comparable to the product label. Viral load fell precipitously on treatment, with only six patients having HIV RNA >40 copies/mL after 84 days of treatment. No trend with exposure was noted for these six patients.

Conclusion

Results of this study suggest that daily doses of 450 mg and 300 mg might meet the EFV treatment needs of HIV-1 infected Ugandans in general and individuals homozygous for CYP2B6*6 mutation, respectively.  相似文献   

10.
The main therapeutic agent for gastroesophageal reflux disease (GERD) is a proton pump inhibitor (PPI). Plasma levels and the acid inhibitory effect of PPIs depend on the activity of cytochrome P450 (CYP) 2C19, which is polymorphic. Genotypes of CYP2C19 are classified into three groups: rapid metabolizers (RMs: *1/*1), intermediate metabolizers (IMs: *1/*X), and poor metabolizers (PMs: *X/*X), where *1 and X represent the wild type and the mutant allele, respectively. RMs include ultra-rapid metabolizers, who possess the CYP2C19*17 allele. The pharmacokinetics and pharmacodynamics of PPIs differ among different CYP2C19 genotype groups. Plasma PPI levels and intragastric pH values during PPI treatment are lowest in the RM group, intermediate in the IM group, and highest in the PM group. These CYP2C19-genotype-dependent differences in the pharmacokinetics and pharmacodynamics of PPIs influence the healing and recurrence of GERD during PPI treatment, suggesting the need for CYP2C19 genotype-based tailored therapy for GERD. CYP2C19 pharmacogenetics should be taken into consideration for the personalization of PPI-based therapy. However, the clinical usefulness of CYP2C19 genotype testing in GERD therapy should be verified in clinical studies.  相似文献   

11.
氯吡格雷是一种广泛用于预防静脉血栓形成的抗血小板药物。研究表明, 携带有CYP2C19基因功能缺失型等位基因CYP2C19*2、CYP2C19*3的病人, 其体内代谢氯吡格雷成为其活性形式的能力降低, 导致氯吡格雷抑制血小板聚集功能减弱。文章旨在建立一种利用高分辨率熔解曲线分析(High-resolution melting curve analysis,HRM)技术在闭合单管中同时对CYP2C19*2、CYP2C19*3两个多态性位点进行简便、准确分型的方法。本实验针对两个SNP位点分别设计特异性的HRM引物, 并在两个位点引物的5′端分别加上富含AT和GC的序列, 保证两个位点的扩增产物熔解峰无重叠。利用HRM技术, 快速、灵敏地对64例随机DNA样本的CYP2C19*2 、CYP2C19*3两个多态性位点进行了基因分型, 且HRM方法的分型结果与测序验证结果完全一致。因此, 利用HRM技术可以实现在闭合单管中简便、准确地对CYP2C19*2 、CYP2C19*3两个多态性位点同时进行基因分型。该方法有望应用于临床, 指导氯吡格雷的个体化用药。  相似文献   

12.
Clopidogrel is an inhibitor of platelet-aggregation used in the prevention of secondary stroke. The molecule is activated by the cytochrome P450 2C19 (CYP2C19) enzyme. The frequent CYP2C19*2 point mutation causes loss of enzyme function, a decreased (heterozygous form) or blocked (homozygous form) formation of the active molecule. Thus, for a patient harboring a mutated allele, clopidogrel does not provide effective protection against stroke. Multiple drugs inhibit the CYP2C19 enzyme and their simultaneous use with clopidogrel is especially hazardous for patients with genetically decreased enzyme activity. Frequency of the CYP2C19*2 is variable in different populations, highest rates were detected in some Asian groups. In our study the CYP2C19 genotype was determined in one Hungarian sample of 354 stroke patients and 221 healthy controls. Frequency of the minor allele was found to be 12.87% (12.85% in stroke patients, 12.89% in healthy controls). The proportion of the homozygous CYP2C19*2 variant causing total loss of gene function was 1.74%, rate of the heterozygous allele causing reduced enzyme activity was 22.26% in the total population. Our results for the allele frequencies of the CYP2C19*2 gene are similar to those found in other Caucasian populations. In conclusion, the homozygous mutation, causing ineffectiveness of clopidogrel is relatively rare. However, the heterozygous form in which interaction of CYP2C19 inhibitors causes further decrease in the genetically impaired enzyme activity is present in every fifth drug-taking patient. Based on our findings, we would like to emphasize that it is important to adjust individually antiplatelet treatment in ischemic stroke patients and to take into consideration genetic factors as well as drugs taken for comorbid conditions.  相似文献   

13.
Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of .005 (*1x2), .013 (*2x2), and .001 (*4x2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T1957C), *2B (additional C2558T), and *4E (additional C2938T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EM/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment.  相似文献   

14.
Clopidogrel is an antiplatelet prodrug that is recommended to reduce the risk of recurrent thrombosis in coronary artery disease (CAD) patients. Paraoxonase 1 (PON1) is suggested to be a rate-limiting enzyme in the conversion of 2-oxo-clopidogrel to active thiol metabolite with inconsistent results. Here, we sought to determine the associations of CYP2C19 and PON1 gene polymorphisms with clopidogrel response and their role in ADP-induced platelet aggregation. Clopidogrel response and platelet aggregation were determined using Multiplate aggregometer in 211 patients with established CAD who received 75 mg clopidogrel and 75–325 mg aspirin daily for at least 14 days. Polymorphisms in CYP2C19 and PON1 were genotyped and tested for association with clopidogrel resistance. Linkage disequilibrium (LD) and their epistatic interaction effects on ADP-induced platelet aggregation were analysed. The prevalence of clopidogrel resistance in this population was approximately 33.2% (n = 70). The frequencies of CYP2C19*2 and *3 were significantly higher in non-responder than those in responders. After adjusting for established risk factors, CYP2C19*2 and *3 alleles independently increased the risk of clopidogrel resistance with adjusted ORs 2.94 (95%CI, 1.65–5.26; p<0.001) and 11.26 (95%CI, 2.47–51.41; p = 0.002, respectively). Patients with *2 or *3 allele and combined with smoking, diabetes and increased platelet count had markedly increased risk of clopidogrel resistance. No association was observed between PON1 Q192R and clopidogrel resistance (adjusted OR = 1.13, 95%CI, 0.70–1.82; p = 0.622). Significantly higher platelet aggregation values were found in CYP2C19*2 and *3 patients when compared with *1/*1 allele carriers (p = 1.98×10−6). For PON1 Q192R genotypes, aggregation values were similar across all genotype groups (p = 0.359). There was no evidence of gene-gene interaction or LD between CYP2C19 and PON1 polymorphisms on ADP-induced platelet aggregation. Our findings indicated that only CYP2C19*2 and *3 alleles had an influence on clopidogrel resistance. The risk of clopidogrel resistance increased further with smoking, diabetes, and increased platelet count.  相似文献   

15.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   

16.
Dicumarinic oral anticoagulants have a narrow therapeutic range and a great individual variability in response, which makes calculation of the correct dose difficult and critical. Genetic factors involved in this variability include polymorphisms of genes that encode the metabolic enzyme CYP2C9 and the target enzyme vitamin K epoxide reductase complex 1 (VKORC1); these polymorphisms can be associated with reduced enzymatic expression. We examined the frequency of the most relevant variants encoding CYP2C9 (alleles *1, *2 and *3) and VKORC1 (SNP -1639A>G) in the Argentinian population. Molecular typing was performed by PCR-RFLP on a randomly selected sample of 101 healthy volunteers from the Hospital Italiano de Buenos Aires gene bank. Fifty-seven subjects were identified as homozygous for CYP2C9*1 and 14 for *2, while 24 and 5 were heterozygous for *2 and *3 alleles; one individual was a composite heterozygote (*2/*3). When we examined VKORC1, 21 subjects were AA homozygous, 60 were AG heterozygotes and 20 were GG homozygotes. This is the first analysis of genotypic frequencies for CYP2C9 and VKORC1 performed in an Argentinian population. These allele prevalences are similar to what is known for Caucasian population, reflecting the European ancestor of our patient population, coming mostly from Buenos Aires city and surroundings. Knowledge of this prevalence information is instrumental for cost-effective pharmacogenomic testing in patients undergoing oral anticoagulation treatment.  相似文献   

17.
The arachidonic acid metabolizing CYP enzymes with prominent roles in vascular regulation are epoxygenases of the two gene family which generate epoxyeicosatrienoic acids. Carriers of CYP2C9 mutant alleles exhibit a diminished CYP2C9 metabolic capacity leading to decreased endothelium-derived hyperpolarizing factors (EDHF) synthesis and an increased risk for atherosclerosis. We investigated whether the polymorphisms of CYP2C9/19 are related with atherosclerosis. We examined 108 patients having angioraphically > or =70 coronary artery narrowing and 90 healthy controls. CYPC2C9/19*2 and CYP2C9/19*3 alleles were investigated in both patients and controls by a real time PCR instrument. There was no significant difference in the distribution of the CYP2C9*2/*3 alleles between cases and the controls. We found that smoker patients having CYP2C9*2 heterozygote genotype have 3.7-fold risk of developing atherosclerosis. CYP2C19*3 heterozygote alleles are more frequent in patients than in controls (10.2%, 5.6% respectively) and it is related with a three-fold risk of atherosclerosis (odds ratio (OR) = 3.75, confidence interval (CI) = 0.75-18.65). It becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. This inter-subject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification processes, e.g., cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development such as atherosclerosis.  相似文献   

18.
This study was designed to investigate the potential differences between Spaniards and Ecuadorian Mestizo people regarding CYP2C8, CYP2C9, and CYP2C19 genetic polymorphisms. DNA from 282 Spaniard and 297 Ecuadorian subjects were analyzed by either a previously reported pyrosequencing method (CY2C8*3, CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3) or a nested PCR technique (CYP2C19*17). Whereas CYP2C19*17 allele distribution was higher in Ecuadorians than in Spaniards (P < 0.001) and the frequency of CYP2C19*3 was similar in these two populations (P > 0.05), the other allelic variants were detected at significantly lower frequencies in Ecuadorians than in Spaniards (P < 0.05). According to the diplotype distributions, the prevalence of the presumed CYP2C9 and CYP2C8 extensive metabolizers was higher in Ecuadorians than in Spaniards (P < 0.05). Individuals genotyped CYP2C19*1/*17 and *17/*17 who were considered as ultrarapid metabolizers were overrepresented in Ecuadorians in relation to Spaniards (P < 0.001). By contrast, among Ecuadorians no poor metabolizers (PMs) of either CYP2C8 or CYP2C9 were found and only two individuals were CYP2C19 PMs. These data are compatible with a higher CYP2C8, CYP2C9, and CYP2C19 activity in Mestizo Ecuadorians as opposed to Spaniards, which could imply differences in dosage requirements for drugs metabolized by these cytochromes and should also be considered in allele-disease association studies.  相似文献   

19.
The genotype frequencies of three metabolic polymorphisms were determined in a sample of a typical community in central Mexico. CYP1A1*3, GSTM1, and GSTT1 polymorphisms were studied in 150 donors born in Mexico and with Mexican ascendants; with respect to ethnicity the subjects can be considered Mestizos. PCR reactions were used to amplify specific fragments of the selected genes from genomic DNA. An unexpected 56.7% frequency of the CYP1A1*3 allele (which depends on the presence of a Val residue in the 462 position of the enzyme, instead of Ile) was found, the highest described for open populations of different ethnic origins (i.e., Caucasian, Asian, African, or African American). The GSTM1 null genotype was found with a frequency of 42.6%, which is not different from other ethnicities, whereas the GSTT1 null genotype had a frequency of 9.3%, one of the lowest described for any ethnic group but comparable to the frequency found in India (9.7%). The frequency of the combined genotype CYP1A1*3/*3 and the GSTM1 null allele is one of the highest observed to date (or perhaps the highest): 13.7% among all the ethnicities studied, including Caucasians and Asians, whereas the combination of CYP1A1*3/*3 with the GSTT1 null allele reached only 2.8%. The GSTM1 null allele combined with the GSTT1 null allele, on the other hand, has one of the lowest frequencies described, 4.24%, comparable to the frequencies found in African Americans and Indians. Finally, the combined CYP1A1*3/*3, GSTM1 null allele, and GSTT1 null allele genotype could not be found in the sample studied; it is assumed that the frequency of carriers of these combined genotypes is less than 1%. CYP1A1*3 and CYP1A1*2 polymorphisms were also evaluated in 50 residents in a community of northern Mexico; the CYP1A1*3 frequency was 54%, similar to that found in the other community studied, and the CYP1A1*2 frequency was 40%, which is high compared to Caucasians and Asians but comparable to the frequency found in Japanese and lower than the frequency found in Mapuche Indians. Haplotype frequencies for these CYP1A1 polymorphisms were estimated, and a linkage disequilibrium value (D) of 0.137 was calculated.  相似文献   

20.
Interethnic differences in the allele frequencies of CYP2D6, NAT2, GSTM1 and GSTT1 deletions have been documented for Caucasians, Asians, and Africans population. On the other hand, data on Amerindians are scanty and limited to a few populations from southern areas of South America. In this report we analyze the frequencies of 11 allele variants of CYP2D6 and 4 allele variants of NAT2 genes, and the frequency of GSTM1 and GSTT1 homozygous deleted genotypes in a sample of 90 donors representing 8 Native American populations from Argentina and Paraguay, identified as Amerindians on the basis of their geographic location, genealogical data, mitochondrial- and Y-chromosome DNA markers. For CYP2D6, 88.6% of the total allele frequency corresponded to *1, *2, *4 and *10 variants. Average frequencies for NAT2 *4, *5, *6 and *7 alleles were 51.2%, 25%, 6.1%, and 20.1%, respectively. GSTM1 deletion ranged from 20% to 66%, while GSTT1 deletion was present in four populations in less than 50%. We assume that CYP2D6 *2, *4, *10, *14; NAT2 *5, *7 alleles and GSTM1 and GSTT1 *0/*0 genotypes are founder variants brought to America by the first Asian settlers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号