首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on 'average' sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease kinetics shows enhanced accessibility of acetylated nucleosomes formed both on telomeric and 'average' sequence DNAs. These results suggest a more complex role for histone acetylation than the decrease of electrostatic interactions between DNA and histones.  相似文献   

2.
Using competitive reconstitution, we have refined the parameters for the binding of histone octamers to artificial nucleosome-positioning sequences of the form: (A/T3nn(G/C)3nn. We find that the optimal period between flexible segments is approximately 10.1 base-pairs, supporting the view that the DNA on the nucleosome surface is overwound. The strongest requirement for flexible DNA is near the protein dyad. However, we see no indication of changes in DNA helical repeat in this region. Using a series of repetitive sequences, we confirm that neither all A/T-rich nor all G/C-rich regions are identical in promoting nucleosome formation. Surprisingly, A/T-rich segments containing the TpA step, subject to purine-purine clash in the minor groove, favor nucleosome formation over sequences lacking this step. Short tracts of adenine residues are found to position on the histone surface like other A/T-rich regions, in the manner predicted by the direction of their sequence-directed bends as determined by electrophoretic methods. Tracts containing five adenine residues are extremely aniostropic in their flexibility and are strongly detrimental to nucleosome formation when positioned for major groove compression. Longer adenine tracts are found to position near the ends of the nucleosomal DNA. However, other positions may be occupied by an A12 tract, with only a minor penalty in the free energy of nucleosome formation. Overall, reconstituted nucleosome positions are translationally degenerate, suggesting a weak dependence on DNA flexibility for nucleosome positioning. Dinucleosomal reconstitutions on tandem dimers of the 5 S RNA gene of Lytechinus variegatus demonstrate a weak phasing dependence for the interaction between nucleosomes. This interaction is maximal for the 202 base-pair repeat and suggests a co-operative mechanism for the formation of ordered nucleosomal arrays based on a combination of DNA flexibility and nucleosome-nucleosome interactions.  相似文献   

3.
4.
DNA originating from chicken erythrocyte mononucleosomes was cloned and sequenced. The properties of nucleosome reconstruction were compared for two cloned inserts, selected on account of their interesting sequence organization, length and difference in DNA bending. Cloned fragment 223 (182 base-pairs) carries alternatively (A)3-4 and (T)4-5 runs approximately every ten base-pairs and is bent; cloned fragment 213 (182 base-pairs) contains a repeated C4-5ATAAGG consensus sequence and is apparently not bent. Our experiments indicate the preference of the bent DNA fragment 223 over fragment 213 to associate in vitro with an octamer of histones under stringent conditions. We provide evidence that the in vitro nucleosome formation is hampered in the case of fragment 213, whereas the reconstituted nucleosomes were equally stable once formed. For the correct determination of the positioning of the histone octamer with regard to the two nucleosome-derived cloned DNA sequences, the complementary use of micrococcal nuclease, exonuclease III and DNase I is a prerequisite. No unique, but rotationally related, positions of the histone octamer were found on these nucleosome-derived DNA fragments. The sequence-dependent anisotropic flexibility, as well as intrinsic bending of the DNA, resulting in a rotational setting of the DNA fragments on the histone core, seems to be a strong determinant for the allowed octamer positions, Exonuclease III digestion indicates a different histone-DNA association when oligo(d(C.G)n) stretches are involved. The apparent stagger near oligo(d(A.T)n) stretches generated by DNase I digestion on reconstituted nucleosome 223 was found to be inverted from the normal two-base 3' overhang to a two-base 5' overhang. Two possibilities of the oligo(d(A.T)n) minor groove location relative to the histone core are envisaged to explain this anomaly in stagger.  相似文献   

5.
We have identified two classes of in vivo topoisomerase II cleavage sites in the Drosophila histone gene repeat. One class co-localizes with DNase I-hypersensitive regions and another novel class maps to a subset of consecutive nucleosome linker sites in the scaffold-associated region (SAR) of the histone gene loop. Prominent topoisomerase II cleavage is also observed in one of the linker regions of the two nucleosomes spanning satellite III, a centromeric SAR-like DNA sequence with a repeat length of 359 bp. At the sequence level, in vivo topoisomerase II cleavage is highly site specific. Comparison of 10 nucleosome linker sites defines an in vivo cleavage sequence whose major characteristic is a prominent GC-rich core. These GC-rich cleavage sites are flanked by extensive arrays of oligo(dA).oligo(dT) tracts characteristic of SAR sequences. Treatment of cells with distamycin selectively enhances cleavage at nucleosome linker sites of the SAR and satellite regions, suggesting that AT-rich sequences flanking cleavage sites may be involved in determining topoisomerase II activity in the cell. These observations provide evidence for the association of topoisomerase II with SARS in vivo.  相似文献   

6.
7.
Pihur V  Datta S  Datta S 《Bioinformation》2011,7(3):120-124
The histone octamer induced bending of DNA into the super-helix structure in nucleosome core particle, is very unique and vital for DNA packing into chromatin. We collected 48 nucleosome crystal structures from PDB and applied a multivariate analysis on the nucleosome structural data. Based on the anisotropic nature of DNA structure, a principal conformational subspace (PCS) is derived from multiple properties to represent the most significant variances of nucleosome DNA structures. The coupling of base pair-oriented parameters with sugar phosphate backbone parameters presented in principal dimensionalities reveals two main deformation modes that have supplemented the existing physical model. By using sequence alignment-based statistics, a positiondependent conformational map for the super-helical DNA path is established. The result shows that the crystal structures of nucleosome DNA have much consistency in position-specific structural variations and certain periodicity is found to exist in these variations. Thus, the positions with obvious deformation patterns along the DNA path in nucleosome core particle are relatively conservative from the perspective of statistics.  相似文献   

8.
The genome of the eukaryotic microbe Dictyostelium discoideum contains some 200 copies of the nonlong-terminal repeat retrotransposon DRE. Among several unique features of this retroelement, DRE is transcribed in both directions leading to the formation of partially overlapping plus strand and minus strand RNAs. The synthesis of minus strand RNAs is controlled by the C-module, a 134-bp DNA sequence located at the 3'-end of DRE. A nuclear protein (CMBF) binds to the C-module via interaction with two almost homopolymeric 24 bp oligo(dA) x oligo(dT) sequences. The DNA-binding drugs distamycin and netropsin, which bind to A x T-rich DNA sequences in the minor groove, competed efficiently for the binding of CMBF to the C-module. The CMBF-encoding gene, cbfA, was isolated and a DNA-binding domain was mapped to a 25-kDa C-terminal region of the protein. A peptide motif involved in the binding of A x T-rich DNA by high mobility group-I proteins ('GRP' box) was identified in the deduced CMBF protein sequence, and exchange of a consensus arginine residue for alanine within the CMBF GRP box abolished the interaction of CMBF with the C-module. The current data support the theory that CMBF binds to the C-module by detecting its long-range DNA conformation and interacting with A x T base pairs in the minor groove of oligo(dA) x oligo(dT) stretches.  相似文献   

9.
10.
Previous studies have shown that drugs which bind in the DNA minor groove reduce the curvature of bent DNA. In this article, we examined the effects of these drugs on the nucleosome assembly of DNA molecules that display different degrees of intrinsic curvature. DAPI (4,6-diamidino-2-phenylindole) inhibited the assembly of a histone octamer onto a 192-base pair circular DNA fragment from Caenorhabditis elegans and destabilized a nucleosome that was previously assembled on this segment. The inhibitory effect was highly selective since it was not seen with nonbent molecules, bent molecules with noncircular shapes, or total genomic DNA. This marked template specificity was attributed to the binding of the ligand to multiple oligo A-tracts distributed over the length of the fragment. A likely mechanism for the effect is that the bound ligand prevents the further compression of the DNA into the minor groove which is required for assembly of DNA into nucleosomes. To further characterize the effects of the drug on chromatin formation, a nucleosome was assembled onto a 322-base pair DNA fragment that contained the circular element and a flanking nonbent segment of DNA. The position of the nucleosome along the fragment was then determined using a variety of nuclease probes including exonuclease III, micrococcal nuclease, DNase I, and restriction enzymes. The results of these studies revealed that the nucleosome was preferentially positioned along the circular element in the absence of DAPI but assembled onto the nonbent flanking sequence in the presence of the drug. DAPI also induced the directional movement of the nucleosome from the circular element onto the nonbent flanking sequence when a nucleosome preassembled onto this template was exposed to the drug under physiologically relevant conditions.  相似文献   

11.
Using high-throughput sequencing, we have mapped sequence-directed nucleosome positioning in vitro on four plasmid DNAs containing DNA fragments derived from the genomes of sheep, drosophila, human and yeast. Chromatins were prepared by reconstitution using chicken, frog and yeast core histones. We also assembled yeast chromatin in which histone H3 was replaced by the centromere-specific histone variant, Cse4. The positions occupied by recombinant frog and native chicken histones were found to be very similar. In contrast, nucleosomes containing the canonical yeast octamer or, in particular, the Cse4 octamer were assembled at distinct populations of locations, a property that was more apparent on particular genomic DNA fragments. The factors that may contribute to this variation in nucleosome positioning and the implications of the behavior are discussed.  相似文献   

12.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

13.
The DNA of all eukaryotic organisms is packaged into nucleosomes (a basic repeating unit of chromatin). A nucleosome consists of histone octamer wrapped by core DNA and linker histone H1 associated with linker DNA. It has profound effects on all DNA-dependent processes by affecting sequence accessibility. Understanding the factors that influence nucleosome positioning has great help to the study of genomic control mechanism. Among many determinants, the inherent DNA sequence has been suggested to have a dominant role in nucleosome positioning in vivo. Here, we used the method of minimum redundancy maximum relevance (mRMR) feature selection and the nearest neighbor algorithm (NNA) combined with the incremental feature selection (IFS) method to identify the most important sequence features that either favor or inhibit nucleosome positioning. We analyzed the words of 53,021 nucleosome DNA sequences and 50,299 linker DNA sequences of Saccharomyces cerevisiae. 32 important features were abstracted from 5,460 features, and the overall prediction accuracy through jackknife cross-validation test was 76.5%. Our results support that sequence-dependent DNA flexibility plays an important role in positioning nucleosome core particles and that genome sequence facilitates the rapid nucleosome reassembly instead of nucleosome depletion. Besides, our results suggest that there exist some additional features playing a considerable role in discriminating nucleosome forming and inhibiting sequences. These results confirmed that the underlying DNA sequence plays a major role in nucleosome positioning.  相似文献   

14.
15.
MMTV-LTR sequences -190/-45 position a histone octamer both in vivo and in vitro. Experimental evidence suggested that nucleosome rotational positioning is determined by the DNA sequence itself. We developed an algorithm that is able to predict the most favorable path of a given DNA sequence over a histone octamer, based on rotational preferences of different dinucleotides. Our analysis shows that these preferences are sufficient for explaining the observed rotational positioning of the MMTV-LTR nucleosome, at one base pair accuracy level. Computer-generated 3-D models of the experimentally calculated and predicted MMTV-LTR nucleosome show that the predicted orientation is fully compatible with the currently available data in terms of accessibility of relevant sequences to regulatory proteins.  相似文献   

16.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

17.
Unique translational positioning of nucleosomes on synthetic DNAs.   总被引:2,自引:0,他引:2       下载免费PDF全文
A computational study was previously carried out to analyze DNA sequences that are known to position histone octamers at single translational sites. A conserved pattern of intrinsic DNA curvature was uncovered that was proposed to direct the formation of nucleosomes to unique positions. The pattern consists of two regions of curved DNA separated by preferred lengths of non-curved DNA. In the present study, 11 synthetic DNAs were constructed which contain two regions of curved DNA of the form [(A5.T5)(G/C)5]4 separated by non-curved regions of variable length. Translational mapping experiments of in vitro reconstituted mononucleosomes using exonuclease III, micrococcal nuclease and restriction enzymes demonstrated that two of the fragments positioned nucleosomes at a single site while the remaining fragments positioned octamers at multiple sites spaced at 10 base intervals. The synthetic molecules that positioned nucleosomes at a single site contain non-curved central regions of the same lengths that were seen in natural nucleosome positioning sequences. Hydroxyl radical and DNase I digests of the synthetic DNAs in reconstituted nucleosomes showed that the synthetic curved element on one side of the nucleosomal dyad assumed a rotational orientation where narrow minor grooves of the A-tracts faced the histone surface with all molecules. In contrast, the curved element on the other side of the nucleosome displayed variable rotational orientations between molecules which appeared to be related to the positioning effect. These results suggest that asymmetry between the two halves of nucleosomal DNA may facilitate translational positioning.  相似文献   

18.
Solvent binding in the nucleosome core particle containing a 147 base pair, defined-sequence DNA is characterized from the X-ray crystal structure at 1.9 Å resolution. A single-base-pair increase in DNA length over that used previously results in substantially improved clarity of the electron density and accuracy for the histone protein and DNA atomic coordinates. The reduced disorder has allowed for the first time extensive modeling of water molecules and ions.Over 3000 water molecules and 18 ions have been identified. Water molecules acting as hydrogen-bond bridges between protein and DNA are approximately equal in number to the direct hydrogen bonds between these components. Bridging water molecules have a dual role in promoting histone-DNA association not only by providing further stability to direct protein-DNA interactions, but also by enabling formation of many additional interactions between more distantly related elements. Water molecules residing in the minor groove play an important role in facilitating insertion of arginine side-chains. Water structure at the interface of the histones and DNA provides a means of accommodating intrinsic DNA conformational variation, thus limiting the sequence dependency of nucleosome positioning while enhancing mobility.Monovalent anions are bound near the N termini of histone α-helices that are not occluded by DNA phosphate groups. Their location in proximity to the DNA phosphodiester backbone suggests that they damp the electrostatic interaction between the histone proteins and the DNA. Divalent cations are bound at specific sites in the nucleosome core particle and contribute to histone-histone and histone-DNA interparticle interactions. These interactions may be relevant to nucleosome association in arrays.  相似文献   

19.
Structural features of a regulatory nucleosome   总被引:9,自引:0,他引:9  
DNA sequences from the long terminal repeat of the mouse mammary tumor virus (MMTV-LTR) position nucleosomes both in vivo and in vitro. Here, were present chromatin reconstitution experiments showing that MMTV-LTR sequences from -236 to +204 accommodate two histone octamers in positions compatible with the in vivo data. This positioning is not influenced by the length of the DNA fragment and occurs in linear as well as in closed circular DNA molecules. MMTV-LTR DNA sequences show an intrinsic bendability that closely resembles its wrapping around the histone octamer. We propose that bendability is responsible for the observed rotational nucleosome positioning. Translational nucleosome positioning seems also to be determined by the DNA sequence. These data, along with the results from reconstitution experiments with insertion mutants, support a modular model of nucleosome phasing on MMTV-LTR, where the actual positioning of the histone octamer results from the additive effect of multiple features of the DNA sequence.  相似文献   

20.
Gottesfeld JM  Luger K 《Biochemistry》2001,40(37):10927-10933
Previous studies have compared the relative free energies for histone octamer binding to various DNA sequences; however, no reports of the equilibrium binding affinity of the octamer for unique sequences have been presented. It has been shown that nucleosome core particles (NCPs) dissociate into free DNA and histone octamers (or free histones) on dilution without generation of stable intermediates. Dissociation is reversible, and an equilibrium distribution of NCPs and DNA is rapidly attained. Under low ionic strength conditions (<400 mM NaCl), NCP dissociation obeys the law of mass action, making it possible to calculate apparent equilibrium dissociation constants (K(d)s) for NCPs reconstituted on defined DNA sequences. We have used two DNA sequences that have previously served as model systems for nucleosome reconstitution studies, human alpha-satellite DNA and Lytechinus variegatus 5S DNA, and find that the octamer exhibits K(d)s of 0.03 and 0.06 nM, respectively, for these sequences at 50 mM NaCl. These DNAs form NCPs that are approximately 2 kcal/mol more stable than total NCPs isolated from cellular chromatin. As for mixed-sequence NCPs, increasing ionic strength or temperature promotes dissociation. van't Hoff plots of K(a)s versus temperature reveal that the difference in binding free energy for alpha-satellite and 5S NCPs compared to bulk NCPs is due almost entirely to a more favorable entropic component for NCPs formed on the unique sequences compared to mixed-sequence NCPs. Additionally, we address the contribution of the amino-terminal tail domains of histones H3 and H4 to octamer affinity through the use of recombinant tailless histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号