首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structure of the mouse epidermal growth factor (EGF) in solution was studied by comparison of the 1H NMR spectra of alpha EGF (1-53) and beta EGF (2-53, des-asparaginyl 1 form). Using pH dependence of chemical shifts and a two-dimensional difference spectrum, the effect of the N-terminal deletion was investigated based on the complete assignment of the proton resonances. The affected residues were all found to be located exactly in the triple-stranded, beta-sheet core in the N-terminal domain of the EGF molecule.  相似文献   

2.
A fragment of rat transforming growth factor alpha (TGF alpha) comprising the third disulfide loop (residues 34-43) was selected as a potential antigenic and receptor binding region. Immunization of rabbits with a peptide conjugate resulted in antibodies which were specific for both the peptide and rat TGF alpha, but not for the homologous epidermal growth factor (EGF). The synthetic decapeptide exhibited low affinity for EGF receptors on human cells. Affinity was increased 100x to 0.2% of EGF or TGF alpha binding by blocking the peptide ends. The blocked decapeptide had no mitogenic activity but prevented the mitogenic effect of EGF and TGF alpha on fibroblasts. This decapeptide is an antagonist and contains an important receptor binding region of TGF alpha.  相似文献   

3.
The structures of human epidermal growth factor (EGF) and human transforming growth factor alpha (TGFα) have been determined in solution using nuclear magnetic resonance techniques. The features of each structure are described and similarities and differences between them are discussed. The structures are combined with information from sequence homologies to produce a model of the receptor-recognition sites of EGF and TGFα, which can be tested in a site-directed mutagenesis programme. The model assists in explaining previous observations of sequence-activity relationships. The TGFα and EGF structures also serve as models for homologous modules in other extracellular proteins.  相似文献   

4.
Long-term storage of recombinant human epidermal growth factor (EGF), an important promoter of cell division, results in its conversion to a new species that elutes later than native EGF on a reverse-phase column. This new species, called EGF-X, has only 20% of the biological activity of native EGF. Peptide mapping indicated that the primary structure of EGF-X differs from that of native EGF solely within the first 13 residues. N-Terminal sequencing of EGF-X revealed that about 30% of the polypeptides have been cleaved at the Asp-3/Ser-4 bond. In addition, the yields after the His residue at position 10 were extremely low, indicating that a chemical modification occurs at residue 11 that is incompatible with Edman degradation. We hypothesized that aspartic acid 11 had been converted to an isoaspartyl residue, and this was confirmed with L-isoaspartyl/D-aspartyl methyltransferase, an enzyme that methylates the side-chain carboxyl group of L-isoaspartyl residues but does not recognize normal L-aspartyl residues. EGF-X, but not EGF, was found to be a substrate of this enzyme, and proteolytic digestion of EGF-X with thermolysin localized the site of methylation to a nine-residue peptide containing position 11. We did not observe formation of the isoaspartyl derivative in EGF that had been denatured by reduction of its disulfide bonds. In addition, replacement of the aspartyl residue at position 11 with glutamic acid resulted in a fully active EGF derivative that does not form detectable amounts of EGF-X. We propose that conversion of this aspartyl residue to isoaspartate is a significant nonenzymatic degradation reaction affecting this growth factor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.  相似文献   

6.
Epidermal growth factor (EGF) has a (1-3,2-4,5-6) disulfide-bonding pattern. This pattern is found in nearly all EGF-like domains, despite wide variation in sequences. Biological data from EGF and at least one EGF-like domain show that disulfide bond isomers have significant bioactivity and suggests that the EGF fold can accommodate alternate disulfide-bonding patterns. The disulfide bonds in murine EGF were altered to seven different patterns and structures were calculated incorporating all the restraints from the highest resolution restraint set available (Tejero et al., 1996). Results showed that besides the native (1-3,2-4,5-6), two other disulfide-bonding patterns: (1-2,3-4,5-6) and (1-3,2-5,4-6) satisfied the restraints as well as the native. The results for these two patterns were indistinguishable from the native on the basis of distance and dihedral violations, XPLOR energies, Procheck statistics, and RMSDs of the final set of structures. Two other disulfide bond patterns, (1-2,3-5, 4-6) and (1-4,2-3,5-6) were able to satisfy all the distance restraints but had one or more cysteine dihedral violations. For all seven isomers, the final calculated structures were highly similar to EGF with all-atom RMSD's in the 1. 5-2 A range. These results suggest that the EGF backbone fold has the unique property of accommodating several different disulfide-bonding patterns.  相似文献   

7.
Mouse monoclonal antibodies to the human epidermal growth factor (EGF) receptor were raised by immunizing with plasma membrane vesicles prepared from A431 cells. This paper describes the characterization of one of the IgG anti-receptor monoclonal antibodies generated and its use to probe the role of transforming growth factor (TGF) in the autonomous growth of a melanoma cell line in culture. This antibody blocks: 1) the binding of 125I-EGF to the A431 EGF receptor; 2) the EGF stimulation of the EGF-dependent protein kinase in vitro; and 3) human fibroblast DNA synthesis and proliferation in culture. It can precipitate the EGF receptor from metabolically labeled A431 cells and human fibroblasts and these receptors have indistinguishable peptide maps. No EGF receptor could be detected by immunoprecipitation after fibroblasts were treated with EGF or conditioned medium from the melanoma cells which secrete EGF-like TGF (alpha TGF). The antibody itself did not down-regulate the receptor but could block down-regulation caused by EGF and alpha TGF. Despite its ability to block EGF-stimulated growth and down-regulation in fibroblasts, the antibody was unable to block the growth and soft agar colony formation of alpha TGF-secreting melanoma cells, nor could the antibody detect EGF receptor in these cells under the conditions developed to prevent down-regulation and lysosomal degradation of the EGF receptor. These studies suggest that these melanoma cells do not have the intact EGF receptor and that the secretion of alpha TGF by these cells plays no role in their growth in culture. The absence of receptor cannot be explained by down-regulation by secreted alpha TGF.  相似文献   

8.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

9.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

10.
We have identified and characterized a 5000-Da protein that induces neurite outgrowth from PC12 pheochromocytoma cells, enhances the survival of embryonic rat brain neurons in primary culture, and induces the multiplication of embryonic rat brain astrocytes in primary culture. The factor is produced by a flat cell PC12 variant that expresses the activated ras oncogene after transfection of the gene. The factor resembles transforming growth factor alpha (TGF alpha) and epidermal growth factor (EGF) in that it induces anchorage-independent colony formation of normal rat kidney cells in soft agar and competes with EGF for binding to the EGF receptor. Rat TGF alpha and human TGF alpha also induce neurite outgrowth from PC12 and enhance the survival of embryonic brain neurons. The PC12 variant-derived factor can be distinguished from TGF alpha and EGF immunologically and by migration rates on reversed-phase high-performance liquid chromatography.  相似文献   

11.
Rat epidermal growth factor, (r-EGF), was isolated from adult male rat submandibular glands, with final yields of 4-6 mg r-EGF from 20 to 25 g wet weight of tissue. Amino acid analysis of r-EGF indicated a high degree of homology with murine EGF (m-EGF) and human EGF, (h-EGF). However, r-EGF contains 49 amino acid residues, versus 53 for human and murine EGFs, and lacks two characteristic tryptophan residues present in the other two species. The lack of tryptophan residues did not affect cellular binding or mitogenic activity or r-EGF. Polyclonal antisera to each of the three separate species demonstrated crossreactivity with the other species of EGF. A sensitive radioimmunoassay was developed for r-EGF which can detect 25 pg of hormone.  相似文献   

12.
Abstract

Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of lig-ands such as EGF or transforming growth factor alpha (TGF-α) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10–16, 36–37, 40–47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-α which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

13.
Human seleno-epidermal growth factor (seleno-EGF), a 53-residue peptide where all six cysteine residues of the parent human EGF sequence were replaced by selenocysteines, was synthesized and the oxidative folding of a polypeptide containing three diselenide bonds was compared to that of the parent cysteine peptide. The crude high performance liquid chromatography (HPLC) profiles clearly showed that both the native EGF and its selenocysteine-analogue fold smoothly, yielding a single sharp peak, proving that even in the case of three disulfide-bonded polypeptides the disulfide-to-diselenide bond substitution is highly isomorphous, as confirmed by conformational circular dichroism measurements and particularly by the biological assays.  相似文献   

14.
15.
Recombinant human transforming growth factor alpha (TGF alpha), which is active as assessed by competition with epidermal growth factor (EGF) for binding to the EGF receptor, has been produced in Escherichia coli and separated from misfolded and inactive forms of recombinant TGF alpha using reverse-phase high performance liquid chromatography. The purified recombinant TGF alpha was used to produce a monoclonal antibody that binds to active TGF alpha specifically. The antibody was coupled to Sepharose and used as an independent method for purifying active TGF alpha. The EGF receptor binding activity of antibody affinity purified TGF alpha is comparable to that of high performance liquid chromatography-purified active TGF alpha, and is 0.55 mg of EGF eq/mg of TGF alpha. The disulfide arrangement of the active TGF alpha was determined after digestion with thermolysin, and found to be analogous to the disulfide arrangement previously determined for EGF (Savage, C. R., Hash, J. H., and Cohen, S. (1973) J. Biol. Chem. 248, 7666-7672).  相似文献   

16.
Untransformed bovine anterior pituitary cells cultured in serum-free defined medium secrete an epidermal growth factor (EGF)-like peptide with an amino acid composition similar to rat or human alpha-transforming growth factor (alpha TGF). To further characterize the bovine pituitary alpha TGF, it was compared to a human alpha TGF partially purified from the conditioned medium of a human melanoma cell line. An anti-alpha TGF monoclonal antibody, MF9, was produced from hybridomas derived from mice immunized with a 17-residue synthetic peptide corresponding to the carboxyl-terminal sequence of rat alpha TGF. The hybridoma supernatants were initially screened for the ability to immunoprecipitate 125I-peptide and then tested for recognition of human alpha TGF. Only 2 of 36 antipeptide antibodies recognized the native alpha TGF. The binding of 125I-peptide to MF9 was displaced by human alpha TGF but not by EGF. Bovine pituitary alpha TGF also displaced the binding of 125I-peptide to MF9 in a similar manner to human alpha TGF. Both iodinated human and bovine pituitary alpha TGF were immunoprecipitated by MF9 whereas 125I-EGF was not. Recognition of alpha TGF by MF9 was strongly dependent on sulfhydryl reduction of the growth factors, suggesting that synthetic peptides representing sulfhydryl-rich protein are not ideal immunogens. Tryptic digests of both 125I-alpha TGFs chromatographed to give a single, indistinguishable peak of iodinated material on a reverse-phase C18 high performance liquid chromatography column when eluted with two different solvent systems, suggesting the generation of a single and identical tyrosine-containing tryptic peptide from both alpha TGFs. The comparisons of the bovine pituitary and human melanoma alpha TGF using a sequence-specific monoclonal antibody and peptide mapping suggest that these alpha TGFs are related and that alpha TGF production is not limited to transformed or fetal sources.  相似文献   

17.
The primary structure of the chicken epidermal growth factor (EGF) receptor was deduced from the sequence of a cDNA clone containing the complete coding sequence and shown to be highly homologous to the human EGF receptor. NIH-3T3 cells devoid of endogenous EGF receptor were transfected with the appropriate cDNA constructs and shown to express either chicken or human EGF receptors. Like the human EGF receptor, the chicken EGF receptor is a glycoprotein with an apparent molecular weight of 170,000. Murine EGF bound to the chicken receptor with approximately 100-fold lower affinity than to the human receptor molecule. Surprisingly, human transforming growth factor alpha (TGF-alpha) bound equally well or even better to the chicken EGF receptor than to the human EGF receptor. Moreover, TGF-alpha stimulated DNA synthesis 100-fold better than did EGF in NIH 3T3 cells that expressed the chicken EGF receptor. The differential binding and potency of mammalian EGF and TGF-alpha by the avian EGF receptor contrasts with the similar affinities of the mammalian receptor for the two growth factors.  相似文献   

18.
We have investigated the actions of transforming growth factor (TGF) type alpha on epidermal growth factor (EGF) receptor mRNA expression in MDA-468 human mammary carcinoma cells in serum-free media. We found that exposure of MDA-468 cells to TGF alpha results in elevated levels of EGF receptor mRNA. This increase in mRNA accumulation showed time and dose dependence. Addition of TGF beta 1 enhanced the accumulation of EGF receptor mRNA induced by TGF alpha in a time- and dose-dependent manner. We also found that triiodothyronine at physiological concentrations exerts synergistic control on the action of TGF alpha alone, or in association with TGF beta 1, on EGF receptor mRNA expression. Similarly, retinoic acid treatment also enhanced in a time- and dose-dependent manner the TGF alpha-dependent response of EGF receptor mRNA and acted synergistically with TGF beta 1. The results described here suggest that optimum regulation of EGF receptor gene expression by TGF alpha is a complex process involving synergistic interactions with heterologous growth factors and hormones.  相似文献   

19.
Y Z Lin  G Caporaso  P Y Chang  X H Ke  J P Tam 《Biochemistry》1988,27(15):5640-5645
A 55-residue peptide comprising the carboxyl portion (residues 26-80) of the Shope fibroma virus growth factor (SFGF), a predicted 80-residue DNA virus gene product that encoded a homologous sequence with the epidermal growth factor transforming growth factor alpha family, was synthesized by a stepwise solid-phase method. The synthetic SFGF (26-80) purified to homogeneity by reverse-phase HPLC was characterized by fission ionization mass spectrometry and amino acid analysis. The disulfide pairings were established by enzymatic digestion and mass spectrometry and were found to be similar to those of EGF and TGF alpha. Synthetic SFGF (26-80) was found to share about 10% of the activities as EGF in the radioreceptor binding to A431 cells, stimulation of [3H]thymidine uptake in NRK cells, and induction of colony formation in soft-agar assay. Our results therefore confirmed that SFGF contained the putative biological activities of the EGF-TGF alpha family and that production of SFGF by Shope fibroma virus infected cells may account for the proliferative diseases associated with this particular virus.  相似文献   

20.
Epidermal growth factor (EGF) plays important roles in multiple biological processes, such as the regulation of cell growth, proliferation, and differentiation. EGF exerts their pharmacologic effects via receptor-mediated mechanism associated with high affinity to epidermal growth factor receptor (EGFR) on the cell surface. Overexpression of EGFR has been reported and implicated in the pathogenesis of many human cancers. The current study addresses the effects of mutations on binding properties of EGF to EGFR. Two mutant structures with three point mutations of conserved residues, Ile23, Arg41 and Leu47, which have been found to be important for the receptor binding, were built using homology modeling. The “wild type” (WT) and the mutant structures, after structural validations, were subjected to molecular dynamics simulations (MDSs). The primary aim of MDS was to investigate the possible impact of mutations on the protein structure and function. Analysis of root mean square deviation (RMSD), other time dependent structural properties and their averages provided some insights into the possible structural characteristics of the mutant and the WT forms of the EGF. RMSD analysis showed that WT EGF was more stable than the mutant structures. The docking analysis revealed that the binding energy of mutant EGFs to EGFR is lower than WT. Combination of the used computational approaches provides a way in understanding the impact of deleterious mutations in altering the EGF and EGFR interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号