首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-induced Ca2+ accumulation efficiency and rates of Ca2+ uptake of the reconstituted sarcoplasmic reticulum (RSR) model membrane system were measured over an extended range of lipid-to-protein (L/P) molar ratios and were compared to those of isolated light sarcoplasmic reticulum (LSR). Highly purified sarcoplasmic reticulum (SR), dissociated in the presence of deoxycholate, was reconstituted for several L/P ratios, according to the same procedure, forming closed membranes vesicles composed of greater than 95% Ca2+ pump protein and SR lipids which were capable of ATP-induced Ca2+ accumulation in the absence of oxalate or other Ca2+ precipitating agents. This suggests that dissociation of SR and reconstitution to form RSR does not significantly affect the ability of the Ca2+ pump protein incorporated into the SR lipid bilayer to establish Ca2+ gradients. Electron micrographs of fixed and stained dispersions of RSR revealed a structural organization of the membrane that was dependent upon the L/P molar ratio. RSR with L/P greater than 88 were composed of closed vesicles whose membranes stained asymmetrically, similar to that observed for LSR. Closed vesicles of RSR with L/P less than 88 were composed of membrane that stained symmetrically. In addition, reconstituted SR preparations with well-defined L/P molar ratios greater than 88 possess a functional behavior similar to that of LSR (in the absence of oxalate, energy efficiencies are 60-70% and apparent initial uptake rates are 80% that of isolated LSR controls); RSR preparations with L/P less than 88 are characterized by significantly depressed values of the energy efficiencies and apparent initial uptake rates especially at low L/P ratios. Thus, we are the first to report a reconstituted SR model membrane system capable of attaining rates of Ca2+ uptake comparable to isolated LSR controls at comparable L/P ratios in the absence of oxalate or other Ca2+ precipitating agents.  相似文献   

2.
X-ray and neutron diffraction studies of oriented multilayers of a highly purified fraction of isolated sarcoplasmic reticulum (SR) have previously provided the separate profile structures of the lipid bilayer and the Ca2+-ATPase molecule within the membrane profile to approximately 10-A resolution. These studies used biosynthetically deuterated SR phospholipids incorporated isomorphously into the isolated SR membranes via phospholipid transfer proteins. Time-resolved x-ray diffraction studies of these oriented SR membrane multilayers have detected significant changes in the membrane profile structure associated with phosphorylation of the Ca2+-ATPase within a single turnover of the Ca2+-transport cycle. These studies used the flash photolysis of caged ATP to effectively synchronize the ensemble of Ca2+-ATPase molecules in the multilayer, synchrotron x-radiation to provide 100-500-ms data collection times, and double-beam spectrophotometry to monitor the Ca2+-transport process directly in the oriented SR membrane multilayer.  相似文献   

3.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

4.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47-72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

5.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

6.
Resonance x-ray diffraction measurements on the lamellar diffraction from oriented multilayers of isolated sarcoplasmic reticulum (SR) membranes containing a small concentration of lanthanide (III) ions (lanthanide/protein molar ratio approximately 4) have allowed us to calculate both the electron density profile of the SR membrane and the separate electron density profile of the resonant lanthanide atoms bound to the membrane to a relatively low spatial resolution of approximately 40 A. Analysis of the membrane electron density profile and modeling of the separate low resolution lanthanide atom profile, using step-function electron density models based on the assumption that metal binding sites in the membrane profile are discrete and localized, resulted in the identification of a minimum of three such binding sites in the membrane profile. Two of these sites are low-affinity, low-occupancy sites identified with the two phospholipid polar headgroup regions of the lipid bilayer within the membrane profile. Up to 20% of the total lanthanide (III) ions bind to these low-affinity sites. The third site has relatively high affinity for lanthanide ion binding; its Ka is roughly an order of magnitude larger than that for the lower affinity polar headgroup sites. Approximately 80% of the total lanthanide ions present in the sample are bound to this high-affinity site, which is located in the "stalk" portion of the "headpiece" within the profile structure of the Ca+2 ATPase protein, approximately 12 A outside of the phospholipid polar headgroups on the extravesicular side of the membrane profile. Based on the nature of our results and on previous reports in the literature concerning the ability of lanthanide (III) ions to function as Ca+2 analogues for the Ca+2 ATPase we suggest that we have located a high-affinity metal binding site in the membrane profile which is involved in the active transport of Ca+2 ions across the SR membrane by the Ca+2 ATPase.  相似文献   

7.
Active Ca2+ transport and passive release were characterized in crude and purified human platelet membranes to facilitate comparison with skeletal muscle sarcoplasmic reticulum. Endoplasmic reticulum markers were enriched from 3- to 14-fold in the purified membranes, while surface membrane antigens were reduced 4-fold and mitochondrial contamination was completely eliminated. The pH optimum for active Ca2+ transport in platelet membranes was 7.6, and the optimum for Ca2+-ATPase activity ranged from 7.6 to 8.0. Upon addition of MgATP there was a burst in active Ca2+ transport activity. In the absence of phosphate, steady state was reached within 20 s; added phosphate promoted continued uptake for greater than 1 h. The maximum pump stoichiometry was 2.0 Ca2+/ATP. The Ca2+ ionophore A23187 caused rapid release of 90% of the sequestered Ca2+ in the presence of phosphate. The dependence of Ca2+ transport on MgATP was biphasic with apparent Km values of 0.6 mM and 9.5 microM. Kinetic measurements with varied external Ca2+ yielded a single Km of 0.1 microM. Mg2+ stimulated Ca2+ transport and Ca2+-ATPase activities. Results with crude and purified membranes were similar, and comparison with the Ca2+ pump from sarcoplasmic reticulum revealed nearly identical enzymatic properties. In contrast to the results of comparing active Ca2+ transport, the characteristics of Ca2+ release from platelet membranes were quite different from those of sarcoplasmic reticulum. External Ca2+ did not promote release of sequestered Ca2+ from platelet membranes in contrast to sarcoplasmic reticulum. In addition, spontaneous release of Ca2+ from platelet membranes did not occur after ATP depletion. Inositol trisphosphate induced rapid partial release of Ca2+ from platelet membranes but had no effect on sarcoplasmic reticulum under identical conditions. Thus active Ca2+ transport is quite similar in internal membranes of platelet and skeletal muscle, but the mechanism of Ca2+ release appears to be entirely different.  相似文献   

8.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed.  相似文献   

9.
The profile structure of functional sarcoplasmic reticulum (SR) membranes was investigated by X-ray diffraction methods to a resolution of 10 A. The lamellar diffraction data from hydrated oriented multilayers of SR vesicles showed monotonically increasing widths for higher order lamellar reflections, indicative of simple lattice disorder within the multilayer. A generalized Patterson function analysis, previously developed for treating lamellar diffraction from lattice-disordered multilayers, was used to identify the autocorrelation function of the unit cell electron density profile. Subsequent deconvolution of this autocorrelation function provided the most probable unit cell electron density profile of the SR vesicle membrane pair. The resulting single membrane profile possesses marked asymmetry, suggesting that a major portion of the Ca++ -ATPase resides on the exterior of the vesicle. The electron density profile also suggests that the Ca++-dependent ATPase penetrates into the lipid hydrocarbon core of the SR membrane. Under conditions suitable for X-ray analysis, SR vesicles prepared as partially dehydrated oriented multilayers are shown to conserve most of their ATP-induced Ca++ uptake functionality, as monitored spectrophotometrically with the Ca++ indicator arsenazo III. This has been verified both in resuspensions of SR after centrifugation and slow partial dehydration, and directly in SR multilayers in a partially dehydrated state (20-30 percent water). Therefore, the profile structure of the SR membrane that we have determined may closely resemble that found in vivo.  相似文献   

10.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

11.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

12.
A Chu  P Volpe  B Costello  S Fleischer 《Biochemistry》1986,25(25):8315-8324
Junctional terminal cisternae are a recently isolated sarcoplasmic reticulum fraction containing two types of membranes, the junctional face membrane with morphologically intact "feet" structures and the calcium pump membrane [Saito, A., Seiler, S., Chu, A., & Fleischer, S. (1984) J. Cell Biol. 99, 875-885]. In this study, the Ca2+ fluxes of junctional terminal cisternae are characterized and compared with three other well-defined fractions derived from the sarcotubular system of fast-twitch skeletal muscle, including light and heavy sarcoplasmic reticulum, corresponding to longitudinal and terminal cisternae regions of the sarcoplasmic reticulum, and isolated triads. Functionally, junctional terminal cisternae have low net energized Ca2+ transport measured in the presence or absence of a Ca2+-trapping anion, as compared to light and heavy sarcoplasmic reticulum and triads. Ca2+ transport and Ca2+ pumping efficiency can be restored to values similar to those of light sarcoplasmic reticulum with ruthenium red or high [Mg2+]. In contrast to junctional terminal cisternae, heavy sarcoplasmic reticulum and triads have higher Ca2+ transport and are stimulated less by ruthenium red. Heavy sarcoplasmic reticulum appears to be derived from the nonjunctional portion of the terminal cisternae. Our studies indicate that the decreased Ca2+ transport is referable to the enhanced permeability to Ca2+, reflecting the predominant localization of Ca2+ release channels in junctional terminal cisternae. This conclusion is based on the following observations: The Ca2+, -Mg2+ -dependent ATPase activity of junctional terminal cisternae in the presence of a Ca2+ ionophore is comparable to that of light sarcoplasmic reticulum when normalized for the calcium pump protein content; i.e., the enhanced Ca2+ transport cannot be explained by a faster turnover of the pump. Ruthenium red or elevated [Mg2+] enhances energized Ca2+ transport and Ca2+ pumping efficiency in junctional terminal cisternae so that values approaching those of light sarcoplasmic reticulum are obtained. Rapid Ca2+ efflux in junctional terminal cisternae can be directly measured and is blocked by ruthenium red or high [Mg2+]. Ryanodine at pharmacologically significant concentrations blocks the ruthenium red stimulation of Ca2+ loading. Ryanodine binding in junctional terminal cisternae, which appears to titrate Ca2+ release channels, is 2 orders of magnitude lower than the concentration of the calcium pump protein. By contrast, light sarcoplasmic reticulum has a high Ca2+ loading rate and slow Ca2+ efflux that are not modulated by ruthenium red, ryanodine, or Mg2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Knowledge of the functional properties of the protein in oriented multilayers, in addition to vesicular dispersions, of membranes such as the isolated sarcoplasmic reticulum (SR), extends the variety of techniques that can be effectively used in studies of the membrane protein's structure or structural changes associated with its function. One technique requiring the use of oriented multilayers to provide more direct time-averaged and time-resolved structural investigations of the SR membrane is x-ray diffraction. Therefore, the kinetics of ATP-induced calcium uptake by isolated SR vesicles in dispersions and hydrated, oriented multilayers were compared. Ca2+ uptake was necessarily initiated by the addition of ATP through flash photolysis of caged ATP, P3-1-(2-nitro)phenylethyl adenosine 5'-triphosphate, with either a frequency-doubled ruby laser or a 200 W Hg arc lamp, and measured with two different detector systems that followed the absorbance changes of the metallochromic indicator arsenazo III, which is sensitive to changes in the extravesicular [Ca2+]. The temperature range investigated was -2 degrees to 26 degrees C. The Ca2+ uptake kinetics of SR membranes in both the vesicular dispersions and oriented multilayers consist of at least two phases, an initial fast phase and a subsequent slow phase. The fast phase, generally believed to be associated with the formation of the phosphorylated enzyme, E approximately P, is kinetically comparable in both SR dispersions and multilayers. The slow phase mathematically follows first-order kinetics with specific rate constants of approximately 0.6 s-1 and approximately 1.2 s-1 for the dispersions at 26 degrees C and multilayers at 21 degrees C, respectively, with the given experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
W L Dean 《Cell calcium》1989,10(5):289-297
Human platelets contain a Ca2+-ATPase in internal membranes that is essential for Ca2+ homeostasis. This Ca2+ pump has enzymatic properties quite similar to the sarcoplasmic reticulum (SR) Ca2+ pumps. Antibodies against the SR Ca2+ pump crossreact with the human platelet protein. However, the platelet Ca2+-ATPase is approximately 10 kD larger than the SR pumps and exhibits a larger mRNA coding for the protein in a megakaryocyte tumor cell line. In addition, the platelet Ca2+-pump may be localized in specialized internal membrane structures that function in Ca2+ uptake and release. These results suggest that the platelet Ca2+-ATPase may represent a new class of internal membrane Ca2+-pumps.  相似文献   

15.
Localization of the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum in rat papillary muscle was determined by indirect immunofluorescence and immunoferritin labeling of cryostat and ultracryotomy sections, respectively. The Ca2+ + Mg2+-ATPase was found to be rather uniformly distributed in the free sarcoplasmic reticulum membrane but to be absent from both peripheral and interior junctional sarcoplasmic reticulum membrane, transverse tubules, sarcolemma, and mitochondria. This suggests that the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum is antigenically unrelated to the Ca2+ + Mg2+-ATPase of the sarcolemma. These results are in agreement with the idea that the sites of interior and peripheral coupling between sarcoplasmic reticulum membrane and transverse tubules and between sarcoplasmic reticulum and sarcolemmal membranes play the same functional role in the excitation-contraction coupling in cardiac muscle.  相似文献   

16.
Ca2+-ATPase activity and Ca2+ uptake in inside-out vesicles from human red cell membranes are changed in parallel by p-nitrophenylphosphate. This indicates that, unlike the Ca2+ pump of sarcoplasmic reticulum, the Ca2+ pump of the red cell membrane does not utilize p-nitrophenylphosphate hydrolysis to drive Ca2+ transport.  相似文献   

17.
Development of myometrium in young female rats was stimulated by administration of diethylstilboestrol. Plasma membrane and sarcoplasmic reticulum from rat myometrium were separated by a new and rapid method using a Percoll gradient. Calcium uptake was inhibited in plasma membrane vesicles isolated from oxytocin-treated myometrium, while no consistent effect of oxytocin was found on the Ca2+ uptake in the sarcoplasmic reticulum. Oxytocin regulated the plasma membrane Ca2+ pump by decreasing its apparent affinity for Ca2+ without affecting its maximal velocity. The K1/2 for Ca2+ in the absence of calmodulin was 0.41 +/- 0.04 microM in normal membranes; this was increased to 0.93 +/- 0.12 microM in oxytocin-treated membranes. Calmodulin decreased the K1/2 for Ca2+ to 0.27 +/- 0.027 microM and oxytocin also increased this, to 0.46 +/- 0.061 microM. The effect of oxytocin on the plasma membrane Ca2+ pump was highly dependent on the hormonal status of the animals. When the diethylstilboestrol was administered together with progesterone, the inhibitory action of oxytocin was totally suppressed, consistent with the expected action of this agent. The results suggest that regulation of the plasma membrane Ca2+ pump may be important in the prolonged elevation of intracellular Ca2+ caused by oxytocin.  相似文献   

18.
The effect of the muscle relaxant dantrolene on isolated sarcoplasmic reticulum was studied in control and malignant-hyperpyrexia-susceptible Landrace pigs. The membranes prepared from both sources showed similar Ca2+-dependent ATPase activities, had comparable phospholipid/protein ratios, and their sodium dodecyl sulphate/polyacrylamide-gel patterns were indistinguishable. Membranes from both sources appeared to bind similar amounts of dantrolene. The drug did not stimulate Ca2+-dependent ATPase activity in preparations from either source. The rates of Ca2+ exchange and Ca2+ efflux appeared to be similar in sarcoplasmic reticulum of control and malignant-hyperpyrexia-susceptible pigs. Dantrolene did not affect either the rates or the amount of Ca2+ lost from the vesicles. These results suggest that dantrolene does not directly affect the movement of Ca2+ across the sarcoplasmic-reticulum membrane.  相似文献   

19.
The review systematizes and analyzes recent data about the role of different Ca(2+)-transport mechanisms in the regulation of Ca2+ metabolism and functional activity of the cardiomyocytes. During the cardiac action potential, Ca2+ enters the cardiomyocytes through sarcolemmal L-type calcium channels and via the Na+/Ca2+ exchange. This Ca2+ activates the release of additional Ca2+ from the sarcoplasmic reticulum. The sum of calcium from sarcolemmal influxes and sarcoplasmic release produces contractile effect. For the occurrence of relaxation, Ca2+ remove from the cytoplasm by three mechanisms, namely, sarcoplasmic Ca2+ pump, Na+/Ca2+ exchange and sarcolemmal Ca2+ pump. In this review, the structural and functional properties of the Ca2+ transport systems in the sarcolemmal membranes, sarcoplasmic reticulum and mitochondria are discussed. In addition alterations in regulation of intracellular calcium by activation of beta- and alpha-adrenergic receptors are consider.  相似文献   

20.
Two biochemical types of Ca2+-pumping ATPases were distinguished in membranes that were isolated from carrot (Daucus carota) suspension-cultured cells. One type hydrolyzed GTP nearly as well as ATP, was stimulated by calmodulin, and was resistant to cyclopiazonic acid. This plasma membrane (PM)-type pump was associated with PMs and endomembranes, including vacuolar membranes and the endoplasmic reticulum (ER). Another pump ("ER-type") that was associated mainly with the ER hydrolyzed ATP preferentially, was insensitive to calmodulin, and was inhibited partially by cyclopiazonic acid, a blocker of the animal sarcoplasmic/ER Ca2+ pump. Oxalate stimulation of Ca2+ accumulation by ER-type, but not PM-type, pump(s) indicated a separation of the two types on distinct compartments. An endomembrane 120-kD Ca2+ pump was partially purified by calmodulin-affinity chromatography. The purified polypeptide bound calmodulin reacted with antibodies to a calmodulin-stimulated Ca2+ pump from cauliflower and displayed [32P]phosphoenzyme properties that are characteristic of PM-type Ca2+ pumps. The purified ATPase corresponded to a phosphoenzyme and a 120-kD calmodulin-binding protein on endomembranes. Another PM-type pump was suggested by a 127-kD PM-associated protein that bound calmodulin. Thus, both ER- and PM-type Ca2+ pumps coexist in most plant tissues, and each type can be distinguished from another by a set of traits, even in partially purified membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号