首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

2.
Serotonin produced a 6 to 10 fold increase of cyclic GMP over baseline levels of this nucleotide in platelets. Maximum stimulation was reached within 30 sec to 1 min after addition of serotonin and was dependent upon its concentration in the medium. Inhibition of serotonin uptake by methysergide, dihydroergotamine and chloroimipramine did not influence the serotonin-induced stimulation of cyclic GMP but glutaraldehyde and formaldehyde blocked it completely. Cyclic AMP levels in platelets were not affected by serotonin. The serotonin-induced stimulation of cyclic GMP is independent of the uptake of this biogenic amine by platelets and is not due to platelet aggregation.  相似文献   

3.
We determined the effect of heat-stable enterotoxin produced by Yersinia enterocolitica (Y. enterocolitica ST) on cyclic nucleotide levels in the intestines of 6-day-old mice and in cultured cell line cells. The concentration of cyclic guanosine 3',5'-monophosphate (cyclic GMP) in homogenates of the intestines increased four- to fivefold by 3 min after intragastric administration of 10 units of purified Y. enterocolitica ST. This increase continued for 60 min, and then the concentration of cyclic GMP fell toward the levels of the controls. On the other hand, fluid accumulation in the intestines was not evident until 60 min after administration of the toxin. Thus, the increase in intestinal cyclic GMP concentration preceded measurable fluid accumulation. The effect on both cyclic GMP levels and fluid accumulation was abolished by treatment of the ST with either alkali solution (pH 10.7) or 2-mercaptoethanol. Likewise, cyclic GMP levels in cultured cells (CCL-6, HeLa, L, and Mm-1 cells) increased dose-dependently by 10 min after incubation of the cells with the ST. Cyclic adenosine 3',5'-monophosphate levels in both intestines and cultured cells were not affected by the toxin.  相似文献   

4.
Two cyclic nucleotide phosphodiesterase (PDE) activities were identified in pig aortic endothelial cells, a cyclic GMP-stimulated PDE and a cyclic AMP PDE. Cyclic GMP-stimulated PDE had Km values of 367 microM for cyclic AMP and 24 microM for cyclic GMP, and low concentrations (1 microM) of cyclic GMP increased the affinity of the enzyme for cyclic AMP (Km = 13 microM) without changing the Vmax. This isoenzyme was inhibited by trequinsin [IC50 (concn. giving 50% inhibition of substrate hydrolysis) = 0.6 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 0.6 microM for cyclic GMP hydrolysis] and dipyridamole (IC50 = 5 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 3 microM for cyclic GMP hydrolysis). Cyclic AMP PDE exhibited a Km of 2 microM for cyclic AMP and did not hydrolyse cyclic GMP. This activity was inhibited by trequinsin (IC50 = 0.2 microM), dipyridamole (IC50 = 6 microM) and, selectively, by rolipram (IC50 = 3 microM). Inhibitors of cyclic GMP PDE (M&B 22948) and of low Km (Type III) cyclic AMP PDE (SK&F 94120) only weakly inhibited the two endothelial PDEs. Incubation of intact cells with trequinsin and dipyridamole induced large increases in cyclic GMP, which were completely blocked by LY-83583. Rolipram, SK&F 94120 and M&B 22948 did not significantly influence cyclic GMP accumulation. Dipyridamole enhanced the increase in cyclic GMP induced by sodium nitroprusside. Cyclic AMP accumulation was stimulated by dipyridamole and trequinsin with and without forskolin. Rolipram, although without effect alone, increased cyclic AMP in the presence of forskolin, whereas M&B 22948 and SK&F 94120 had no effects on resting or forskolin-stimulated levels. These results suggest that cyclic GMP-stimulated PDE regulates cyclic GMP levels and that both endothelial PDE isoenzymes contribute to the control of cyclic AMP.  相似文献   

5.
C D Green  D W Martin 《Cell》1974,2(4):241-245
The activity of phosphoribosyl pyrophosphate synthetase, purified from a line of rat hepatoma cells in continuous culture, is maximally stimulated (2–4 fold) by less than 10?7M cyclic GMP. Half maximal stimulation occurs at 2 × 10?9M. Cyclic GMP stimulates phosphoribosyl pyrophosphate synthetase by decreasing the Km of the enzyme for ATP from 50 μM to 10 μM without affecting the Vmax; it has no effect on the Km for ribose 5-phosphate, the other substrate. Cyclic AMP alone has no effect on the enzyme activity, but at micromolar concentrations it antagonizes the stimulation by cyclic GMP. GMP, GDP, and GTP do not stimulate enzyme activity; and AMP and ADP at micromolar concentrations do not antagonize the effect of cyclic GMP.There is no detectable cyclic nucleotide-activated protein kinase in the enzyme preparation. Cyclic GMP significantly stabilizes the enzyme to heat inactivation. We conclude that cyclic GMP binds directly to the enzyme in an allosteric fashion, causing it to have an increased affinity for one of its substrates, and that cyclic AMP directly antagonizes this effect.  相似文献   

6.
The addition of the divalent cation ionophore A23187, carbachol, norepinephrine or insulin to rat fat cells elevated cyclic GMP. The increase in cyclic GMP due to these agents was greater at 4 than at 2 minutes after their addition. Cyclic GMP accumulation was also elevated by the addition of 0.1 to 0.5 mM sodium oleate in the presence of 0.1% albumin and by albumin containing added palmitate with an FFA/albumin molar ratio of 6.7. The rise in cyclic GMP due to all agents was markedly reduced in calcium-free buffer. The effects of the various agents on cyclic GMP accumulation in rat fat cells had little correlation with lipolysis. Insulin was an effective anti-lipolytic agent in both the presence and absence of calcium while neither A23187 nor carbachol had any effect on fat cell lipolysis.  相似文献   

7.
Cyclic nucleotide phosphodiesterase activity towards cyclic AMP and cyclic GMP was studied in extracts of rat islets of Langerhans. Biphasic Eadie plots [Eadie (1942) J. Biol. Chem. 146, 85-93] were obtained with either substrate suggesting the presence of both 'high'- and 'low'-Km components. The apparent Km values were 6.2 +/- 0.5 (n = 8) microM and 103.4 +/- 13.5 (6) microM for cyclic AMP and 3.6 +/- 0.3 (12) microM and 61.4 +/- 7.5 (13) microM for cyclic GMP. With cyclic AMP as substrate, phosphodeisterase activity was increased by calmodulin and Ca2+ and decreased by trifluoperazine, a specific inhibitor of calmodulin. With cyclic GMP as substrate, phosphodiesterase activity was decreased by omission of Ca2+ or addition of trifluoperazine. Addition of exogenous calmodulin had no effect on activity. The data suggest that Ca2+ may influence the islet content of cyclic AMP and cyclic GMP via effects on calmodulin-dependent cyclic nucleotide phosphodiesterase(s).  相似文献   

8.
The effects of parathyroid hormone (PTH) on concentrations of cyclic AMP and cyclic GMP were investigated in isolated renal cortical tubules from hamsters. Efflux of 45Ca from tubules was compared to temporal changes in both cyclic nucleotide concentrations. A rapid increase in cyclic AMP occurred following addition of PTH which was maximal by 1 min but decreased over the next 4 min period. Cyclic GMP concentrations were not significantly altered at 1 min but increased between 1 and 5 min from basal levels. Concentrations of both nucleotides remained significantly elevated from basal levels between 5 and 15 min following PTH. Efflux of 45Ca was increased by PTH with time-course changes closely paralleling changes in cyclic GMP concentrations. Changes in both cyclic AMP and cyclic GMP were related to PTH concentrations of the incubation media and were increased by addition of theophylline. Increasing the calcium concentration from 1 to 3 mM did not significantly alter the effect of PTH on cyclic AMP, however, cyclic GMP concentrations were further increased.  相似文献   

9.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

10.
[3H]dihydroalprenolol and [3H]quinuclidinylbenzilate binding of membranes of rat parotid gland were generally unchanged after 10, 15, 30, or 60 min of simultaneous electrical stimulation of the parasympathetic and sympathetic nerves to the gland, although stimulation of either nerve separately caused nerve-specific changes in both. Concentrations of cyclic nucleotides of the gland were, however, increased significantly from levels of the unstimulated parotid gland. Cyclic GMP showed a 10-fold increase after 10 min of stimulation, whereas only a 2-fold increase in cyclic AMP was found at this time. The increases were maintained, albeit at reduced levels, at 15 and 30 min also but by 60 min both were not different from levels of the unstimulated gland. The increases induced by separate stimulation of each nerve were greater but nerve specific, and the changes induced with simultaneous stimulation tended to reflect a reigning influence of one nerve on the other.  相似文献   

11.
Potentiation of platelet aggregation by atrial natriuretic peptide   总被引:1,自引:0,他引:1  
A L Loeb  A R Gear 《Life sciences》1988,43(9):731-738
Atrial natriuretic peptide (ANP) has binding sites on a variety of tissues, including human platelets. We have used a new, quenched-flow approach coupled to single-particle counting to investigate the effects of ANP (rat, 1-28) on the initial events (within the first several seconds) following human platelet activation. While ANP alone (1 pM-100 nM) had no effect, ANP significantly potentiated thrombin (0.4 units/ml)-, epinephrine (15 microM)- and ADP (2 or 10 microM)-induced aggregation. Maximum stimulation occurred between 10 to 100 pM. ANP had no influence on the thrombin or ADP-induced increase in platelet volume associated with the "shape change." Since ANP receptors are coupled to a particulate guanylate cyclase and some ANP-induced effects may be mediated through cyclic GMP, we studied how another activator of platelet guanylate cyclase, sodium nitroprusside, affected platelet activation and cyclic nucleotide levels. Sodium nitroprusside (1 microM) inhibited ADP, but not thrombin or epinephrine-induced aggregation. Both sodium nitroprusside (1 microM) and ANP (10 nM) increased cyclic GMP levels by 80% and 37%, respectively, within 60 sec in washed platelets. ANP had no effect on platelet cyclic AMP, while sodium nitroprusside induced a 77% increase. These data suggest that the platelet ANP receptor may be coupled to guanylate cyclase and the rise in cyclic GMP may potentiate platelet function.  相似文献   

12.
Cyclic GMP and cyclic AMP levels in eight different rat tissues were examined after animlas were immersed in liquid nitrogen. In order of decreasing concentration, cerebellu, kidney, lung and cerebral cortex contained the greatest quantities fo cyclic GMP. These tissues also contained relatively high concentrations of cyclic AMP. Compared to values in animals which were sacrificed in liquid nitrogen, levels of both nucleotides in many of the tissues examined were altered by decapitation or anesthesia with ether and pentobarbital. Decapitation increased the levels of both cyclic GMP and cyclic AMP in cerebellum, lung, heart, liver and skeletabl muscle. However, decapitation increased only cyclic AMP in cerebral cortex and kidney. Our previously reported high level of cyclic GMP in lung was attributed to ether anesthesia and surgical removal which increased the cyclic GMP content in lung, heart, testis and skeletal muscle. The effect of ether on cyclic GMP levels in lung and heart was blocked by pretreatment of animals with atropine which indicated that cholinergic agents increase cyclic GMP content in these tissues. Acetylcholine and carbachol in the presence of theophylline increased the accumulation of cyclic GMP in incubations of rat lung minces. Increases in cyclic GMP and cyclic AMP levels in cerebellum with ether anesthesia were prevented if rats were immersed in liquid nitrogen after anesthesis with ether. Anesthesia with pentobarbital decreased the levels of cyclic GMP in cerebellum and kidney and increased the nucleotide in heart, liver, testis and skeletal muscle compared to levels in tissues from animals immersed in liquid nitrogen. However, pentobarbital increased cyclic AMP levels in cerebellum and cerebral cortex and decreased the nucleotide in liver, kidney, testis and skeletal muscle. These studies provide a possible explanation for the variability in in vivo levels of cyclic GMP and cyclic AMP which have been previously reported. In addition, these studies support the hypothesis that the synthesis and degradation of cyclic AMP and cyclic GMP are regulated independently and not necessarily in a parallel or reciprocal manner. These studies also suggest that the increase accumulation of one cyclic nucleotide has no major effect on the synthesis and/or metabolism of the other; however, such interactions cannot be entirely excluded from the results of this study.  相似文献   

13.
Synthetic somatostatin stimulated cyclic GMP accumulation with dose dependency (10 ng/ml – 10 μg/ml in a dose examined) in rat anterior pituitary gland in vitro. The stimulation of cyclic GMP levels in the gland was observed after 2 min incubation with somatostatin. Cyclic AMP production induced by TRH or PGE1 was supressed by this GH release inhibiting factor, while cyclic GMP concentration in the gland was elevated. The present results seem to suggest that inhibitory effect on GH release by somatostatin in anterior pituitary gland is mediated through change in concentration of cyclic AMP and cyclic GMP in the target cells.  相似文献   

14.
Cyclic AMP and cyclic GMP levels were measured in rat liver at various times following partial hepatectomy. Cyclic AMP levels show an initial rapid dropfollowed by a biphasic increase while cyclic GMP remains at an almost constant level throughout the time period examined.  相似文献   

15.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

16.
Cyclic GMP concentration and cyclic GMP phosphodiesterase activity were studied in rat mothers and fetuses at 17, 19 and 21 days of intrauterine life and 0, 1, 4, 10, 15,20, 30 and 45 days after birth. During this developmental period, the increase in cyclic GMP concentration was discrete and the value in 15-day-old rats was already similar to the adult level. Cyclic GMP phosphodiesterase activity increased from 17- to 19-day fetuses and was significantly reduced in 21-day fetuses, neonates, and 1-day-old rats. This reduction may be a result of fetal endocrine preparation for parturition. During postnatal development, cyclic GMP phosphodiesterase activity increased in a parallel way in the limbic system, corpora striata, cerebral hemispheres, and diencephalon, reaching maximal level between 20 and 30 days after birth, and then decreasing to the adult value. The highest activity was found in corpora striata and the lowest in diencephalon. Cerebellar cyclic GMP phosphodiesterase activity was very high in the 4-day-old rat (257% of adult value) and diminished significantly in the 10-day-old rat with no subsequent changes. Kinetic analysis of the enzyme during postnatal forebrain development showed an increase in both the Vmax and the apparent Km. A decrease in the enzyme's Vmax was observed only in the cerebellum.The importance of cyclic GMP phosphodiesterase regulation of cyclic GMP concentrations in the brain during development is discussed.  相似文献   

17.
Cyclic AMP and cyclic GMP levels were measured in the anterior and posterior pituitary, hypothalamus, pineal and cerebellum of female rats sacrificed during proestrus, metestrus and diestrus. In the first experiment rats were sacrificed by microwave irradiation between 0900 and 1100, between 1600 and 1800 and between 2100 and 2300. Cyclic AMP and cyclic GMP levels did not vary in any region tested as a function of the estrous cycle except for slightly elevated cyclic GMP levels in the posterior pituitary during proestrus. However the time of day at which the animals were sacrificed affected levels of cyclic AMP in the hypothalamus and cerebellum and levels of cyclic GMP in the cerebellum. In a second experiment female rats were all sacrificed between 2130 and 2330 during proestrus and diestrus. In this experiment rats were sacrificed either immediately upon removal from the home cage or after 10 min of immobilization stress, or after 10 min of open field activity. No differences in pituitary cyclic nucleotides were seen between proestrous and diestrous animals. However, stressed animals showed large cyclic AMP increases in the pituitary, and activity increased cyclic GMP levels in the cerebellum and pineal.  相似文献   

18.
The effects of acetylcholine chloride and isoproterenol on myocardiial cyclic GMP, cyclic AMP and on isometric tension were studied in isolated electrically driven rabbit atria. Acetylcholine (0.5 muM) produced a significant decrease in isometric force that was associated with a significant elevation in atrial cyclic GMP. Cyclic AMP was significantly lowered at 15 seconds after the addition of acetylcholine, but was only slightly decreased at earlier time periods. Both the negative inotropic action and increase in cyclic GMP after addition of acetylcholine were blocked by atropine. Isoproterenol (0.1 muM) produced a significant increase in isometric tension that was associated with a significant elevation in atrial cyclic AMP levels, whereas cyclic GMP levels were not changed. These effects were blocked by practolol. The increases in atrial cyclic GMP and cyclic AMP following addition of acetylcholine and isoproterenol, respectively, preceded the changes in isometric tension in response to these agents. These data support the hypothesis that changes in intracellular levels of cyclic AMP and cyclic GMP may mediate the positive and negative inotropic effects of adrenergic and cholinergic agents.  相似文献   

19.
The time course of corticotropin-induced steroidogenesis and changes in intracellular cyclic AMP and cyclic GMP levels were investigated in isolated bovine adrenocortical cells prepared by trypsin digestion. Corticotropin produced a peak rise in cyclic AMP during the first 5 min of stimulation and enhanced steroid production after 15 min. Corticotropin also caused a decrease in cortical cyclic GMP at 5 min; this decrease in cyclic GMP reverted to a 2-3 fold increase at 15-30 min which gradually subsided by 60 min. A steroidogenic concentration of prostaglandin E2 also produced an elevation in the levels of both nucleotides, but the rise in cyclic GMP preceded the rise in cyclic AMP. These results suggest that the relative amounts of cyclic AMP and cyclic GMP, rather than the absolute levels of cyclic AMP, may be a key factor in the regulation of steroidogenesis.  相似文献   

20.
The time course of corticotropin-induced steroidogenesis and changes in intracellular cyclic AMP and cyclic GMP levels were investigated in isolated bovine adrenocortical cells prepared by trypsin digestion. Corticotropin produced a pea a peak rise in cyclic AMP during the first 5 min of stimulation and enhanced steroid production after 15 min. Corticotropin also caused a decrease in cortical cyclic GMP at 5 min; this decrease in cyclic GMP reverted to a 2–3 fold increase at 15–30 min which gradually subsided by 60 min. A steroidogenic concentration of prostaglandin E2 also produced an elevation in the levels of both nucleotides, but the rise in cyclic GMP preceded the rise incyclic AMP. These results suggest that the relative amount of cyclic AMP and cyclic GMP, rather than the absolute levels of cyclic AMP, may be a key factor in the regulation of steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号