首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
揭示发病机制是心律失常诊断、治疗、药物研发和设备设计的关键.整合当前在心脏分子生物学、生物化学、生理学及解剖学方面的最新成果,构建从离子通道、心肌细胞、心肌纤维、心肌组织、心脏器官到躯体各个层次的多尺度多模态心脏电生理模型,用于系统研究微观局部变化发生、发展、转化为宏观心律失常表现的过程,将彻底改变传统从基因突变、蛋白质表达、细胞电生理、临床表现单独研究心律失常的方式,实现微观与宏观研究的统一,使心脏电生理模型成为系统研究心律失常发病机制的有力手段.本文综述了心脏电生理模型的构建方法和研究进展,讨论了多尺度心脏电生理模型在揭示心律失常机制研究中的作用和地位,给出了基于心脏电生理模型心律失常研究的挑战和重要发展方向.  相似文献   

2.
心脏毒性是药物研发失败的主要原因之一,也是临床前安全评价研究的难题之一。人胚胎干细胞和诱导型人多能干细胞均具有无限增殖、自我更新和多向分化的特性,为体外心脏毒性筛选实验提供了细胞资源。人胚胎干细胞和诱导型人多能干细胞诱导分化的心肌细胞相似,具有相同的形态结构,且随着培养时间的推移,功能性心、Na^+、Ca^2+通道密度逐渐增加、心肌特异性基因ANF、α—MHC、MLC-2α的表达量增加,具有相似的动作电位时程和收缩性等特点,相当于幼稚型心肌细胞。将它们应用于已知作用药物的心脏毒性筛选,检测心肌细胞离子通道、动作电位、心脏损伤标志物、收缩功能的变化,获得与临床相似的结果。因此,建立人胚胎干细胞和诱导型人多能干细胞诱导分化心肌细胞的体外评价模型,大大减少了药物研发的时间和成本,克服了种属间的差异,推动了心脏毒性体外评价方法的发展。  相似文献   

3.
房颤是临床上最常见的持续性心律失常.揭示房颤的发病机制和病理生理过程是其诊断、预防、治疗、药物研发及临床设备设计的关键,而实验和临床只能呈现细胞或亚细胞的局部特性及房颤病症的宏观结果.随着生物信息技术、统计分析技术等的发展,运用多物理尺度的虚拟生理心脏模型,来实现宏观结果与微观机制相统一的研究方法备受关注.本文综述了离子通道、心肌细胞、心脏组织及器官等多尺度的虚拟生理心脏模型研究进展,探讨了近年来基于虚拟生理心脏模型的房颤机制研究以及房颤的治疗手段,提示了房颤研究的挑战和未来的发展方向.  相似文献   

4.
心脏类器官     
类器官是体外构建的一类由多种类型细胞组成的,与体内器官或组织高度相似的三维培养物,它能够模拟细胞所属器官的某些结构和生理功能。心血管疾病患病率及死亡率一直处于上升阶段,相关基础研究主要基于细胞和动物模型。心脏类器官是对传统心血管疾病模型的有效补充,在体外更真实和准确地反映人体心脏的生物学特性和功能,使其在疾病机制研究、药物开发、精准医疗和再生医学等领域具有广泛应用前景和独特优势。该文主要介绍了心脏类器官作为新一代疾病模型在心肌梗死、心力衰竭、遗传性心脏病和心律失常等方面的应用,并探讨了类器官技术未来的发展方向和面临的挑战。  相似文献   

5.
用计算机模拟建立生物学模型在现代生物学研究中是一种非常重要的方法.就心脏而言,从基因到细胞到整个器官,现在都建立了大量的计算机模型.这些模型在帮助我们证实心脏功能机制的假说、预测和评估药物的作用以及诊断疾病等方面都起着重要作用.就心脏不同层面的计算机模型进行了简要的综述.  相似文献   

6.
随着超声技术的发展和对心脏疾病治疗研究的深入,超声技术在心脏疾病治疗领域中的应用逐步成为研究热点。其中,体外超声作为一种无创物理疗法,尤为受到研究者们的关注。本文介绍了近年来体外超声在心脏疾病治疗中的应用进展,并对其存在的问题和发展前景进行了探讨。  相似文献   

7.
为了更深入地了解目前靠生理实验及临床手段无法洞察的心脏三维空间的电生理运行机制,分析和表现心脏复杂的电生理活动,从而揭示心脏的生理物理特性,本研究通过人类心肌细胞的动作电位传导数学模型,结合基于心脏解剖数据所建立的真实心脏组织结构的三维空间模型,构建出精细的心脏生物物理融合模型,并将心脏在三维空间中的生物物理活动表现出来.实验结果表明,基于心脏动作电位传导的融合模型,不同时刻的动作电位传导在非匀质性组织内的三维空间中的传播位置、空间关系以及生物物理过程被清晰地显示出来,心脏研究人员从而能够以视觉感知的方式认识和深入理解人类心脏电生物物理系统的功能机制,并有助于进一步推测心脏的生理和病理反应.  相似文献   

8.
转基因技术是一项非常重要的生物工程新技术,主要应用于生产药物蛋白及异种器官移植,建立疾病基因模型,提高和改善家畜生产的产量和质量以及研究新基因的功能及表达调控.重点综述了几个新的转基因技术-UAS-Gal4系统,热休克启动子载体,RNAi技术,原核胚胎显微注射及基因敲除技术在研究果蝇及脊椎动物心脏基因中的应用.  相似文献   

9.
本文考虑神经系统的调节作用,利用张恒贵等人构建的兔子心脏窦房结-心房细胞体系的完整二维模型,将其改造为能模拟人体心脏起搏活动的在体模型,并通过计算机仿真模拟研究了环境噪声对心脏体系起搏活动的影响.模拟结果显示:一方面,利用该模型可以重现有生理缺陷的心脏体系异常搏动现象,例如老年化的心脏因细胞膜钠电流减少或部分心肌细胞死...  相似文献   

10.
胚胎干细胞定向分化为心肌细胞研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞在体外可分化为 3个胚层的所有组织细胞。诱导人类胚胎干细胞定向分化为心肌细胞可为心肌梗死、心肌坏死等重大心脏疾病患者实施细胞治疗 ,也可作为种子细胞 ,用于构建供器官移植用的人造心脏 ;进一步可研究心肌细胞发育分化的分子机理及更直观的用于体外筛选人类心血管药物等。对人类胚胎干细胞及其定向分化为心肌细胞分子机理的研究进展及其所面临的问题作一综述。  相似文献   

11.
Summary Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.  相似文献   

12.
Animal models play a crucial role in fundamental and medical research. Progress in the fields of drug discovery, regenerative medicine and cancer research among others are heavily dependent on in vivo models to validate in vitro observations, and develop new therapeutic approaches. However, conventional rodent and large animal experiments face ethical, practical and technical issues that limit their usage. The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis and loss/gain of function experiments. It is also an established model for tissue/cell transplantation, and because of its lack of immune system in early development, the chick embryo is increasingly recognised as a model of choice for mammalian biology with new applications for stem cell and cancer research. Here, we review novel applications of the chick embryo model, and discuss future developments of this in vivo model for biomedical research.  相似文献   

13.
A challenge in developing effective treatments is the modeling of the human disease using in vitro and in vivo systems. Animal models have played a critical role in the understanding of disease pathophysiology, target validation, and evaluation of novel therapeutic agents. However, as the success rate from entry into clinical testing to drug approval remains low, it is critical to have high quality and well-validated models reflective of the disease condition. Additional experimental models are being developed based on functional in vitro 3D tissue models such as organoids and 3D bioprinted tissues. Because these 3D tissue models mimic closer the architecture, cell composition and physiology of native tissues, they are now being used as screening platforms in drug discovery and development and for tissue transplant in regenerative medicine. Here we review the current state-of-art of in vitro and in vivo translational models for the development of therapies for rare diseases of the liver.  相似文献   

14.
Summary Nearly 30 years ago the conditions for culturing immature cotton ovules were established to serve as a working research tool for investigating the physiology and biochemistry of fiber development. Not only has this tissue culture method been employed to characterize the biochemistry of plant cell expansion and secondary cell wall synthesis, but ovule cultures have contributed to numerous other aspects of plant cell physiology and development as well. In addition to basic studies on fiber development, cotton ovule cultures have been used to examine plant-fungal interactions, to model low temperature stress responses, to elucidate the pathways responsible for pigment formation in naturally pigmented fiber and to probe how cytoskeletal elements regulate cell wall organization. Success in rescuing Gossypium interspecific hybrids was dependent on ovule culture media formulations that could support early embryo development in ovulo. As tissues produced in culture are analyzed by increasingly more sophisticated techniques, there appear to be some differences between ovule growth in planta and ovule growth in vitro. Discerning how ovule culture fiber development is different from fiber development in field-grown plants can contribute valuable information for crop improvement. Cotton ovule cultures are an especially attractive model system for studying the effects of gravity on cell elongation, cellulose biosynthesis and embryo development and are excellent targets for examining transient expression of introduced gene constructs. With only minor modification, the procedure originally described by C. A. Beasley and I. P. Ting for growing cotton ovules in vitro will continue to be useful research tool for the foreseeable future.  相似文献   

15.
组织因子是一种位于细胞膜上的糖蛋白,是外源性凝血过程的关键启动因子,近年来其在肿瘤细胞迁移等其他过程中的重要作用也已逐渐被揭示.构建了融合有His标签的小鼠组织因子胞外区段重组蛋白基因,利用昆虫杆状病毒蛋白表达系统成功表达并得到大量可溶性重组小鼠组织因子.利用血浆凝集实验和鼠尾流血时间实验对此重组小鼠组织因子进行的活性检测表明,此重组蛋白具有良好的生物活性,可以引起血浆凝血或缩短鼠尾流血时间.同时,利用此重组蛋白为抗原,制备了小鼠组织因子的小鼠源功能阻断性单克隆抗体,在血浆凝集实验中证明其对小鼠组织因子的活性有明显抑制作用.利用此阻断性单抗,成功地在小鼠深静脉血栓模型中减轻了血栓形成,证明组织因子在深静脉血栓的病程发展中起重要作用,这也是组织因子阻断性单抗在此类动物模型中的首次成功应用.通过此项工作,成功地建立了大量制备具有良好生物活性的重组小鼠组织因子蛋白的方法,并进而得到了小鼠组织因子功能阻断性单抗,为利用各种小鼠动物模型对组织因子在各项生命活动中的作用进行深入研究奠定了良好的基础.  相似文献   

16.
Echinacea, better known as purple coneflower, has received a global attention because of its increasing medicinal value. There is enormous potential for the discovery of new medicinal compounds in this species and an immediate need for techniques to facilitate the production of high quality, chemically consistent plant material for drug development and clinical trials. In vitro tissue culture of Echinacea can play a vital role in the development of novel germplasm, rapid multiplication, and genetic modifications for an enhanced phytochemical production. Recent establishment of liquid culture techniques, large-scale bioreactors, and Agrobacterium-mediated transformation are changing the production parameters of the Echinacea species. This review provides an overview of the recent developments in in vitro technologies and challenges that remain in the Echinacea biotechnology.  相似文献   

17.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   

18.
The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.  相似文献   

19.
Recent advances in the development of protocols for in vitro culture and genetic manipulation have provided new avenues for the development of novel varieties of Pelargonium and for use as model systems for investigating the factors controlling plant morphogenesis. Optimized techniques of meristem culture have supplemented the culture indexing methods in commercial greenhouse production resulting in availability of large-scale pathogen indexed planting material. Currently, technologies are available for the mass in vitro propagation of F1 hybrid Pelargonium through both organogenesis and somatic embryogenesis. The somatic embryogenesis model system has allowed researchers to identify critical factors controlling plant morphogenesis in vitro such as regulation of regeneration by growth regulators, choice of explant and characterization of induction and expression phases of morphogenesis in Pelargonium. Also, optimization of technologies for genetic transformation of Pelargonium opened up the possibilities for developing genotypes with novel characters, including resistance to some of the major diseases. Finally, the development of regeneration systems for Pelargonium spp. has facilitated conventional crop improvement programs, thereby providing a valuable resource to the horticultural industry.  相似文献   

20.
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号