首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Kinetochore components play a major role in regulating the transmission of genetic information during cell division. Ndc10p, a kinetochore component of the essential CBF3 complex in budding yeast is required for chromosome attachment to the mitotic spindle. ndc10-1 mutant was shown to display chromosome mis-segregation as well as an aberrant mitotic spindle (Goh and Kilmartin, 1993). In addition, Ndc10p localizes along the spindle microtubules (Muller-Reichert et al., 2003). To further understand the role of Ndc10p in the mitotic apparatus, we performed a three-dimensional electron microscopy (EM) reconstruction of mitotic spindles from serial sections of cryo-immobilized ndc10-1 mutant cells. This analysis reveals a dramatic reduction in the number of microtubules present in the half-spindle, which is connected to the newly formed spindle pole body (SPB) in ndc10-1 cells. Moreover, in contrast to wild-type (WT) cells, ndc10-1 cells showed a significantly lower signal intensity of the SPB components Spc42p and Spc110p fused with GFP, in mother cell bodies compared with buds. A subsequent EM analysis also showed clear defects in the newly formed SPB, which remains in the mother cell during anaphase. These results suggest that Ndc10p is required for maturation of the newly formed SPB. Intriguingly, mutations in other kinetochore components, ndc80-1 and spc24-1, showed kinetochore detachment from the spindle, similar to ndc10-1, but did not display defects in SPBs. This suggests that unattached kinetochores are not sufficient to cause SPB defects in ndc10-1 cells. We propose that Ndc10p, alongside its role in kinetochore–microtubule interaction, is also essential for SPB maturation and mitotic spindle integrity.  相似文献   

2.
The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986. Cell. 44:65-76). Examination by electron microscopy of mutant cells subjected to the nonpermissive temperature reveals a defect in SPB duplication. Although duplication is seen to occur, the nascent SPB fails to undergo insertion into the nuclear envelope. The parental SPB remains functional, organizing a monopolar spindle to which all the chromosomes are presumably attached. Order-of-function experiments reveal that the NDC1 function is required in G1 after alpha-factor arrest but before the arrest caused by cdc34. Molecular analysis shows that the NDC1 gene is essential and that it encodes a 656 amino acid protein (74 kD) with six or seven putative transmembrane domains. This evidence for membrane association is further supported by immunofluorescent localization of the NDC1 product to the vicinity of the nuclear envelope. These findings suggest that the NDC1 protein acts within the nuclear envelope to mediate insertion of the nascent SPB.  相似文献   

3.
J H Thomas  D Botstein 《Cell》1986,44(1):65-76
We describe the phenotypes caused by a cold-sensitive lethal mutation (ndc1-1) that defines the NDC1 gene of yeast. Incubation of ndc1-1 at a nonpermissive temperature causes failure of chromosome separation in mitosis but does not block the cell cycle. This defect results in an asymmetric cell division in which one daughter cell doubles in ploidy and the other inherits no chromosomes. The spindle poles are properly segregated to the two daughter cells. The primary visible defect is that the chromosomes remain associated with only one pole, and are thus delivered to one daughter cell. Meiosis II, but not meiosis I, is sensitive to the ndc1-1 defect, suggesting that NDC1 is required for some feature common to mitosis and meiosis II. ndc1-1 appears to define a new class of cell cycle gene required for the attachment of chromosomes to the spindle pole.  相似文献   

4.
We report a novel connection between nuclear pore complexes (NPCs) and spindle pole bodies (SPBs) revealed by our studies of the Saccharomyces cerevisiae NDC1 gene. Although both NPCs and SPBs are embedded in the nuclear envelope (NE) in yeast, their known functions are quite distinct. Previous work demonstrated that NDC1 function is required for proper SPB duplication (Winey, M., M.A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1993. J. Cell Biol. 122:743–751). Here, we show that Ndc1p is a membrane protein of the NE that localizes to both NPCs and SPBs. Indirect immunofluorescence microscopy shows that Ndc1p displays punctate, nuclear peripheral localization that colocalizes with a known NPC component, Nup49p. Additionally, distinct spots of Ndc1p localization colocalize with a known SPB component, Spc42p. Immunoelectron microscopy shows that Ndc1p localizes to the regions of NPCs and SPBs that interact with the NE. The NPCs in ndc1-1 mutant cells appear to function normally at the nonpermissive temperature. Finally, we have found that a deletion of POM152, which encodes an abundant but nonessential nucleoporin, suppresses the SPB duplication defect associated with a mutation in the NDC1 gene. We show that Ndc1p is a shared component of NPCs and SPBs and propose a shared function in the assembly of these organelles into the NE.  相似文献   

5.
The spindle pole body (SPB) in Saccharomyces cerevisiae functions to nucleate and organize spindle microtubules, and it is embedded in the nuclear envelope throughout the yeast life cycle. However, the mechanism of membrane insertion of the SPB has not been elucidated. Ndc1p is an integral membrane protein that localizes to SPBs, and it is required for insertion of the SPB into the nuclear envelope during SPB duplication. To better understand the function of Ndc1p, we performed a dosage suppressor screen using the ndc1-39 temperature-sensitive allele. We identified an essential SPB component, Nbp1p. NBP1 shows genetic interactions with several SPB genes in addition to NDC1, and two-hybrid analysis revealed that Nbp1p binds to Ndc1p. Furthermore, Nbp1p is in the Mps2p-Bbp1p complex in the SPB. Immunoelectron microscopy confirmed that Nbp1p localizes to the SPB, suggesting a function at this location. Consistent with this hypothesis, nbp1-td (a degron allele) cells fail in SPB duplication upon depletion of Nbp1p. Importantly, these cells exhibit a "dead" SPB phenotype, similar to cells mutant in MPS2, NDC1, or BBP1. These results demonstrate that Nbp1p is a SPB component that acts in SPB duplication at the point of SPB insertion into the nuclear envelope.  相似文献   

6.
Both the spindle pole body (SPB) and the nuclear pore complex (NPC) are essential organelles embedded in the nuclear envelope throughout the life cycle of the budding yeast Saccharomyces cerevisiae. However, the mechanism by which these two multisubunit structures are inserted into the nuclear envelope during their biogenesis is not well understood. We have previously shown that Ndc1p is the only known integral membrane protein that localizes to both the SPBs and the NPCs and is required for SPB duplication. For this study, we generated a novel temperature-sensitive (ts) allele of NDC1 to investigate the role of Ndc1p at the NPCs. Yeast cells carrying this allele (ndc1-39) failed to insert the SPB into the nuclear envelope at the restrictive temperature. Importantly, the double mutation of ndc1-39 and NPC assembly mutant nic96-1 resulted in cells with enhanced growth defects. While nuclear protein import and NPC distribution in the nuclear envelope were unaffected, ndc1-39 mutants failed to properly incorporate the nucleoporin Nup49p into NPCs. These results provide evidence that Ndc1p is required for NPC assembly in addition to its role in SPB duplication. We postulate that Ndc1p is crucial for the biogenesis of both the SPBs and the NPCs at the step of insertion into the nuclear envelope.  相似文献   

7.
The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements.  相似文献   

8.
The spindle midzone is critical for spindle stability and cytokinesis. Chromosomal passenger proteins relocalize from chromosomes to the spindle midzone after anaphase onset. The recent localization of the inner-kinetochore, centromere-binding factor 3 (CBF3) complex to the spindle midzone in budding yeast has led to the discovery of novel functions for this complex in addition to its essential role at kinetochores. In G1/S cells, CBF3 components are detected along dynamic microtubules, where they can "search-and-capture" newly replicated centromeres. During anaphase, CBF3 is transported to the microtubule plus-ends of the spindle midzone. Consistent with this localization, cells containing a mutation in the CBF3 subunit Ndc10p show defects in spindle stability during anaphase. In addition, ndc10-1 cells show defects during cytokinesis, resulting in a defect in cell abscission. These results highlight the importance of midzone-targeted proteins in coordinating mitosis with cell division. Here we discuss these findings and explore the significance of CBF3 transport to microtubule plus-ends at the spindle midzone.  相似文献   

9.
McBratney S  Winey M 《Genetics》2002,162(2):567-578
Mutation of either the yeast MPS2 or the NDC1 gene leads to identical spindle pole body (SPB) duplication defects: The newly formed SPB is improperly inserted into the nuclear envelope (NE), preventing the cell from forming a bipolar mitotic spindle. We have previously shown that both MPS2 and NDC1 encode integral membrane proteins localized at the SPB. Here we show that CUE1, previously known to have a role in coupling ubiquitin conjugation to ER degradation, is an unusual dosage suppressor of mutations in MPS2 and NDC1. Cue1p has been shown to recruit the soluble ubiquitin-conjugating enzyme, Ubc7p, to the cytoplasmic face of the ER membrane where it can ubiquitinate its substrates and target them for degradation by the proteasome. Both mps2-1 and ndc1-1 are also suppressed by disruption of UBC7 or its partner, UBC6. The Mps2-1p mutant protein level is markedly reduced compared to wild-type Mps2p, and deletion of CUE1 restores the level of Mps2-1p to nearly wild-type levels. Our data indicate that Mps2p may be targeted for degradation by the ER quality control pathway.  相似文献   

10.
In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain–containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1–Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.  相似文献   

11.
We have purified a complex from Saccharomyces cerevisiae containing the spindle components Ndc80p, Nuf2p, Spc25p, and Spc24p. Temperature-sensitive mutants in NDC80, SPC25, and SPC24 show defects in chromosome segregation. In spc24-1 cells, green fluorescence protein (GFP)-labeled centromeres fail to split during spindle elongation, and in addition some centromeres may detach from the spindle. Chromatin immunoprecipitation assays show an association of all four components of the complex with the yeast centromere. Homologues of Ndc80p, Nuf2p, and Spc24p were found in Schizosaccharomyces pombe and GFP tagging showed they were located at the centromere. A human homologue of Nuf2p was identified in the expressed sequence tag database. Immunofluorescent staining with anti-human Nuf2p and with anti-HEC, the human homologue of Ndc80p, showed that both proteins are at the centromeres of mitotic HeLa cells. Thus the Ndc80p complex contains centromere-associated components conserved between yeasts and vertebrates.  相似文献   

12.
KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p- binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells.  相似文献   

13.
The establishment of proper kinetochore-microtubule attachments facilitates faithful chromosome segregation. Incorrect attachments activate the spindle assembly checkpoint (SAC), which blocks anaphase onset via recruitment of a cohort of SAC components (Mph1/MPS1, Mad1, Mad2, Mad3/BubR1, Bub1 and Bub3) to kinetochores. KNL1, a component of the outer kinetochore KMN network (KNL1/Mis12 complex/Ndc80 complex), acts as a platform for Bub1 and Bub3 localization upon its phosphorylation by Mph1/MPS1. The Ndc80 protein, a major microtubule-binding site, is critical for MPS1 localization to the kinetochores in mammalian cells. Here we characterized the newly isolated mutant ndc80-AK01 in fission yeast, which contains a single point mutation within the hairpin region. This hairpin connects the preceding calponin-homology domain with the coiled-coil region. ndc80-AK01 was hypersensitive to microtubule depolymerizing reagents with no apparent growth defects without drugs. Subsequent analyses indicated that ndc80-AK01 is defective in SAC signaling, as mutant cells proceeded into lethal cell division in the absence of microtubules. Under mitotic arrest conditions, all SAC components (Ark1/Aurora B, Mph1, Bub1, Bub3, Mad3, Mad2 and Mad1) did not localize to the kinetochore. Further genetic analyses indicated that the Ndc80 hairpin region might act as a platform for the kinetochore recruitment of Mph1, which is one of the most upstream SAC components in the hierarchy. Intriguingly, artificial tethering of Mph1 to the kinetochore fully restored checkpoint signaling in ndc80-AK01 cells, further substantiating the notion that Ndc80 is a kinetochore platform for Mph1. The hairpin region of Ndc80, therefore, plays a critical role in kinetochore recruitment of Mph1.  相似文献   

14.
gamma-Tubulin is a conserved component of microtubule-organizing centers and is thought to be involved in microtubule nucleation. A recently discovered Saccharomyces cerevisiae gene (TUB4) encodes a tubulin that is related to, but divergent from, gamma-tubulins. TUB4 is essential for cell viability, and epitope-tagged Tub4 protein (Tub4p) is localized to the spindle pole body (Sobel, S.G., and M. Snyder. 1995.J. Cell Biol. 131:1775-1788). We have characterized the expression of TUB4, the association of Tub4p with the spindle pole body, and its role in microtubule organization. Tub4p is a minor protein in the cell, and expression of TUB4 is regulated in a cell cycle-dependent manner. Wild-type Tub4p is localized to the spindle pole body, and a Tub4p- green fluorescent protein fusion is able to associate with a preexisting spindle pole body, suggesting that there is dynamic exchange between cytoplasmic and spindle pole body forms of Tub4p. Perturbation of Tub4p function, either by conditional mutation or by depletion of the protein, results in spindle as well as spindle pole body defects, but does not eliminate the ability of microtubules to regrow from, or remain attached to, the spindle pole body. The spindle pole bodies in tub4 mutant cells duplicate but do not separate, resulting in a monopolar spindle. EM revealed that one spindle pole body of the duplicated pair appears to be defective for the nucleation of microtubules. These results offer insight into the role of gamma- tubulin in microtubule-organizing center function.  相似文献   

15.
A rate-limiting step during translation initiation in eukaryotic cells involves binding of the initiation factor eIF4E to the 7-methylguanosine-containing cap of mRNAs. Overexpression of eIF4E leads to malignant transformation [1-3], and eIF4E is elevated in many human cancers [4-7]. In mammalian cells, three eIF4E-binding proteins each interact with eIF4E and inhibit its function [8-10]. In yeast, EAP1 encodes a protein that binds eIF4E and inhibits cap-dependent translation in vitro [11]. A point mutation in the canonical eIF4E-binding motif of Eap1p blocks its interaction with eIF4E [11]. Here, we characterized the genetic interactions between EAP1 and NDC1, a gene whose function is required for duplication of the spindle pole body (SPB) [12], the centrosome-equivalent organelle in yeast that functions as the centrosome. We found that the deletion of EAP1 is lethal when combined with the ndc1-1 mutation. Mutations in NDC1 or altered NDC1 gene dosage lead to genetic instability [13,14]. Yeast strains lacking EAP1 also exhibit genetic instability. We tested whether these phenotypes are due to loss of EAP1 function in regulating translation. We found that both the synthetic lethal phenotype and the genetic instability phenotypes are rescued by a mutant allele of EAP1 that is unable to bind eIF4E. Our findings suggest that Eap1p carries out an eIF4E-independent function to maintain genetic stability, most likely involving SPBs.  相似文献   

16.
Melloy PG  Holloway SL 《Genetics》2004,167(3):1079-1094
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase in the ubiquitin-mediated proteolysis pathway (UMP). To understand how the APC/C was targeted to its substrates, we performed a detailed analysis of one of the APC/C components, Cdc23p. In live cells, Cdc23-GFP localized to punctate nuclear spots surrounded by homogenous nuclear signal throughout the cell cycle. These punctate spots colocalized with two outer kinetochore proteins, Slk19p and Okp1p, but not with the spindle pole body protein, Spc42p. In late anaphase, the Cdc23-GFP was also visualized along the length of the mitotic spindle. We hypothesized that spindle checkpoint activation may affect the APC/C nuclear spot localization. Localization of Cdc23-GFP was disrupted upon nocodazole treatment in the kinetochore mutant okp1-5 and in the cdc20-1 mutant. Cdc23-GFP nuclear spot localization was not affected in the ndc10-1 mutant, which is defective in spindle checkpoint function. Additional studies using a mad2Delta strain revealed a microtubule dependency of Cdc23-GFP spot localization, whether or not the checkpoint response was activated. On the basis of these data, we conclude that Cdc23p localization was dependent on microtubules and was affected by specific types of kinetochore disruption.  相似文献   

17.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

18.
A “precocious” cleavage furrow develops and ingresses during early prometaphase in Mesostoma ehrenbergii spermatocytes (Forer and Pickett-Heaps Eur J Cell Biol 89:607-618, 2010). In response to chromosome movements which regularly occur during prometaphase and that alter the balance of chromosomes in the two half-spindles, the precocious furrow shifts its position along the cell, moving 2–3 μm towards the half cell with fewer chromosomes (Ferraro-Gideon et al. Cell Biol Int 37:892-898, 2013). This process continues until proper segregation is achieved and the cell enters anaphase with the cleavage furrow again in the middle of the cell. At anaphase, the furrow recommences ingression. Spindle microtubules (MTs) are implicated in various furrow positioning models, and our experiments studied the responses of the precocious furrows to the absence of spindle MTs. We depolymerized spindle MTs during prometaphase using various concentrations of nocodazole (NOC) and colcemid. The expected result is that the furrow should regress and chromosomes remain in the midzone of the cell (Cassimeris et al. J Cell Sci 96:9-15, 1990). Instead, the furrows commenced ingression and all three bivalent chromosomes moved to one pole while the univalent chromosomes, that usually reside at the two poles, either remained at their poles or moved to the opposite pole along with the bivalents, as described elsewhere (Fegaras and Forer 2018). The microtubules were completely depolymerized by the drugs, as indicated by immunofluorescence staining of treated cells (Fegaras and Forer 2018), and in the absence of microtubules, the furrows often ingressed (in 33/61 cells) at a rate similar to normal anaphase ingression (~?1 μm/min), while often simultaneously moving toward one pole. Thus, these results indicate that in the absence of anaphase and of spindle microtubules, cleavage furrows resume ingression.  相似文献   

19.
20.
During mitosis a monooriented chromosome oscillates toward and away from its associated spindle pole and may be positioned many micrometers from the pole at the time of anaphase. We tested the hypothesis of Pickett-Heaps et al. (Pickett-Heaps, J. D., D. H. Tippit, and K. R. Porter, 1982, Cell, 29:729-744) that this behavior is generated by the sister kinetochores of a chromosome interacting with, and moving in opposite direction along, the same set of polar microtubules. When the sister chromatids of a monooriented chromosome split at the onset of anaphase in newt lung cells, the proximal chromatid remains stationary or moves closer to the pole, with the kinetochore leading. During this time the distal chromatid moves a variable distance radially away from the pole, with one or both chromatid arms leading. Subsequent electron microscopy of these cells revealed that the kinetochore on the distal chromatid is free of microtubules. These results suggest that the distal kinetochore is not involved in the positioning of a monooriented chromosome relative to the spindle pole or in its oscillatory movements. To test this conclusion we used laser microsurgery to create monooriented chromosomes containing one kinetochore. Correlative light and electron microscopy revealed that chromosomes containing one kinetochore continue to undergo normal oscillations. Additional observations on normal and laser-irradiated monooriented chromosomes indicated that the chromosome does not change shape, and that the kinetochore region is not deformed, during movement away from the pole. Thus movement away from the pole during an oscillation does not appear to arise from a push generated by the single pole-facing kinetochore fiber, as postulated (Bajer, A. S., 1982, J. Cell Biol., 93:33-48). When the chromatid arms of a monooriented chromosome are cut free of the kinetochore, they are immediately ejected radially outward from the spindle pole at a constant velocity of 2 micron/min. This ejection velocity is similar to that of the outward movement of an oscillating chromosome. We conclude that the oscillations of a monooriented chromosome and its position relative to the spindle pole result from an imbalance between poleward pulling forces acting at the proximal kinetochore and an ejection force acting along the chromosome, which is generated within the aster and half-spindle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号