首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat.

Methods

Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique.

Results

Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W.

Conclusions

In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.  相似文献   

2.
Summary. Taurine, a potent antioxidant has been reported to show an antidiabetic effect in streptozotocin-induced diabetes mellitus in which the development of hyperglycemia results from the damage to β cells of pancreas by reactive oxygen species. In addition, taurine also increases the excretion of nitrite and enhances the formation of kinins and would be expected to improve insulin resistance. The effect of taurine on insulin sensitivity was examined in the high fructose-fed rats, an animal model of insulin resistance. Male Wistar rats of body weight 170–190 g were divided into 4 groups: a control group and taurine-supplemented control group, taurine supplemented and unsupplemented fructose-fed group. An intravenous glucose tolerance test (IVGTT) and a steady state plasma glucose level (SSPG) were performed before the sacrifice. The fructose-fed rats displayed hyperglycemia and insulin resistance and they had a greater accumulation of glycogen than did control rats. Hyperglycemia and insulin resistance were significantly lower in the taurine supplemented fructose-fed group than in the unsupplemented fructose-fed group. Urinary kallikrein activity was higher in taurine-treated animals than in the rats fed only fructose. The activity of membrane bound ATPases were significantly lower in fructose-fed rats than in the control rats and were significantly higher in the taurine supplemented group than in the fructose-fed group. Taurine effectively improves glucose metabolism in fructose-fed rats presumably via improved insulin action and glucose tolerance. Received January 5, 2001 Accepted August 21, 2001  相似文献   

3.
Milk diet has long been recommended in the management of gastrointestinal pathologies. Since milk feeding represents a high fat-low carbohydrate diet and it is acknowledged that insulin resistance is one of the consequences of high fat feeding, it is important to know whether or not chronic milk feeding leads to an impairment of the insulin-mediated glucose metabolism. To examine this question, adult female rats were given raw cow's milk (50% of total calories as lipids) for 18 days. They were compared to rats raised in parallel and fed the standard laboratory diet (15% of total calories as lipids). At the end of the 18 day period, body weight, daily caloric intake, basal plasma glucose and insulin levels in the milk-fed rats were similar to those in the control rats.In vivo insulin action was assessed with the euglycemichyperinsulinemic clamp technique in anesthetized animals. These studies were coupled with the 2-deoxyglucose technique allowing a measurement of glucose utilization by individual tissues. In the milk fed rats: 1) the basal rate of endogenous glucose production was significantly (p<0.01) reduced (by 20%); 2) their hepatic glucose production was however normally suppressed by hyperinsulinemia; 3) their basal glucose utilization rate was significantly (p<0.01) reduced (by 20%); 4) their glucose utilization rate by the whole-body mass or by individual tissues was normally increased by hyperinsulinemia. These results indicate that insulin action in adult rats is not grossly altered after chronic milk-feeding, at least under the present experimental conditions.  相似文献   

4.
Tzeng TF  Lo CY  Cheng JT  Liu IM 《Life sciences》2007,80(16):1508-1516
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.  相似文献   

5.
Genetically obese Zucker rats have abnormally low brain insulin content   总被引:2,自引:0,他引:2  
The concentration of immunoreactive insulin (IRI) extracted from the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, amygdala, midbrain, and hindbrain was significantly lower in obese (fa/fa) and heterozygous (Fa/fa) Zucker rats in comparison to lean (Fa/Fa) Zucker rats. This deficit in brain IRI content was most severe in the hypothalamus and olfactory bulb and was independent of severe obesity since the marked reduction of brain IRI content was also found in heterozygous rats which possessed only one copy of the fa allele. These results demonstrate that in the 2-3 month-old female Zucker rat, the fa allele is associated with defective regulation of insulin in the brain.  相似文献   

6.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

7.
8.
Our objective was to determine if a cafeteria-type diet with increased fat content would block the decrease in insulin secretion induced by adrenalectomy in obese rats. Five week old Zucker (fa/fa) rats were adrenalectomized. One week later, half of the adrenalectomized groups, and age-matched, sham-operated animals were given a diet of 16% fat and 44% carbohydrate. Control animals were maintained on standard rat chow (4.6% fat and 49% carbohydrate). After 4 weeks on the diets, in vivo measurements included caloric intake, weight gain, plasma corticosterone, triglyceride, free fatty acids, and oral glucose tolerance tests. In vitro measurements included glucose-stimulated insulin secretion, glucose phosphorylating activity, islet triglyceride content, and fatty acid oxidizing activity of cultured islets. Generally, the cafeteria diet did not block the effects of adrenalectomy on in vitro insulin secretion parameters, even though in sham-operated animals weight gain and insulin resistance was induced by the diet in vivo. Adrenalectomy and the diet exerted independent effects on glucose phosphorylation and fatty acid oxidation in islets. In conclusion, adrenalectomy decreased the elevated insulin secretion in fa/fa rats. The failure of a cafeteria diet enriched in fat to block the adrenalectomy-mediated changes in B-cell function indicates the importance of glucocorticoids and centrally-mediated effects on insulin secretion and other metabolic parameters.  相似文献   

9.
目的探讨雷帕霉素对葡萄糖代谢水平影响的特点、机制。方法选择4周龄、雄性C57BL/6小鼠,高热量、高脂饮食喂养8周后为肥胖组(HF,n=18),普通饲料喂养为正常组(NC,n=18)。两组小鼠分别给予安慰剂(n=6)、腹腔注射雷帕霉素(2 mg/kg,隔日1次,n=6)、喂饮2.37%亮氨酸水(n=6),2周后分别行灌胃葡萄糖耐量试验(glucose tolerance test,GTT)、胰岛素耐受性试验(insulin tolerance test,ITT)以及胰岛组织病理学检查。结果正常组小鼠腹腔注射雷帕霉素后葡萄糖负荷30min血糖水平显著升高(与安慰剂组比P=0.038,与亮氨酸组比P=0.035)。肥胖组小鼠腹腔注射雷帕霉素后空腹血糖水平显著高于安慰剂组(P=0.031),葡萄糖负荷30 min血糖显著高于安慰剂组(P=0.013)、亮氨酸组(P=0.041)。仅正常组小鼠胰岛素敏感性与安慰剂组相比显著降低(P=0.039)。雷帕霉素干预后腹腔脂肪量显著减少(正常组与安慰剂组比P0.001,肥胖组与安慰剂组比P=0.013)。结论雷帕霉素对哺乳动物糖代谢水平有显著影响,正常小鼠与机体胰岛素敏感性下降有关;肥胖小鼠与胰岛素分泌功能受损、胰岛素抵抗相关。  相似文献   

10.
We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser(473) phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy of targeting the RAS to improve both blood pressure regulation and insulin action in conditions of insulin resistance.  相似文献   

11.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

12.
In this study, gastrin release in the obese Zucker rat was investigated by in vivo and in vitro experiments. Obese rats exhibited normal plasma gastrin levels at 3 weeks (preobese), were moderately hypergastrinemic at 3 months and severely hypergastrinemic at 5 months, compared to lean littermates. Following oral peptone, plasma gastrin levels doubled in both lean and obese rats. Basal and vagally stimulated gastrin release from perfused stomachs was greater in obese compared to lean rats and atropine had no effect on basal gastrin release in either group. Basal somatostatin release from the perfused stomach was found not to differ in both groups of animals. Morphological studies revealed an increase in the number of gastrin-containing G-cells in adult obese rats compared to lean littermates, but not in 3-week-old pups compared to lean littermates, indicating a strong correlation between cell number and plasma gastrin levels. These data indicate that the obese Zucker rat exhibits fasting hypergastrinemia in vivo, a condition which appears after weaning and increases in severity with age. Gastrin hypersecretion persists from the vascularly perfused stomach preparation. The basal hypergastrinemia of the obese Zucker rat is independent of a hyperactive postganglionic cholinergic drive but is associated with and probably causally related to an increase in antral G-cell numbers.  相似文献   

13.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

14.
Adipose tissues are differently involved in lipid metabolism and obesity according to their type and location. Increasing reports stress on the impact of redox metabolism on obesity and metabolic syndrome. The aim of this work is to investigate the site-specific redox metabolism in three different adipose tissues and its changes occurring in obesity. We analysed enzymatic and non-enzymatic parameters, and focused on the reduced/oxidized glutathione and coenzyme Q couples. In lean compared with obese non-diabetic Zucker rats, interscapular brown fat seems well protected against oxidative stress and epididymal adipose tissue shows a more reduced glutathione redox state, associated with a higher susceptibility to lipophilic oxidative stress than inguinal adipose tissue. Epididymal adipose tissue redox metabolism significantly differs from inguinal one by its limited redox metabolism adaptation. Our results demonstrate site-specific managements of reactive oxygen species metabolism in obese Zucker rats. These results are not consistent with the classic deciphering of inflammatory situation and produce a new conception of the redox parameters implication in the development of the metabolic syndrome.  相似文献   

15.
Under basal conditions (zero insulin), paraovarian adipocytes from 19-day-pregnant rats exhibited the same rates of [U-14C]glucose conversion into CO2 and total lipids as did those from age-matched virgin rats. The dose-response curves for insulin stimulation of glucose metabolism were similar in both groups: maximal response (+100% over basal values) and high sensitivity (half-maximal effect at 0.05 nM-insulin). The present results suggest that the insulin resistance in vivo that occurs during late pregnancy may involve circulating factors lost in vitro.  相似文献   

16.
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway.  相似文献   

17.
Exercise training plays a major role in the improving physiology of diabetes. Herein we aimed to investigate the influence of exercise upon the calcium-dependent calpain-isoform expressions of lean or obese Zucker rats, a model of obesity and type II diabetes (NIDDM). Five-month-old rats were divided: (1) obese sedentary (OS, n=7); (2) obese exercise (OE, n=7); (3) lean sedentary (LS, n=7); (4) lean exercise (LE, n=7). After 2-month exercise (treadmill running), the body weight (BW) and expression of calpain 10, μ-calpain, and m-calpain in skeletal muscles were determined by RT-PCR, using β-actin as internal standard. We found exercise is useful for BW lossing, especially in the obese rats. The BW difference between OS and OE rats (69 g vs. 18.2 g) was more significantly than that between LS and LE rats (41.8 g vs. 28.7g). The calpain 10 expression of LS rats (0.965) was lower than that of LE rats (1.006), whereas those of OS and OE were comparable. The μ- or m-calpain expressions of sedentary groups (OS, LS) was significantly higher than those of exercise groups (OE, LE). The μ-calpain expression (1.13/0.92) and m-calpain expression (1.01/0.99) of OS/LS rats was significantly higher than those of OE/LE rats [1.07/0.9 (μ-calpain); 0.97/0.95 (m-calpain)]. We concluded that the μ- or m-calpains in skeletal muscle are regulated by exercise in both lean and obese Zucker rats. Exercise and BW controlling might improve the physiopathology of obesity and diabetes. Both μ- or m-calpains might become useful markers for prognoses of diabetes.  相似文献   

18.
19.
CCK-resistance in Zucker obese versus lean rats   总被引:4,自引:0,他引:4  
Obese Zucker rats are less sensitive to the satiety effect of CCK than lean litter mates. The present studies further characterised this CCK resistance. Subcutaneous injection of the CCK agonist caerulein dose-dependently decreased food intake in Zucker obese and lean rats whereas the CCK-B agonist gastrin-17 did not. Caerulein at 4 μg/kg, which resulted in CCK plasma bioactivity slightly above postprandial levels, decreased food intake in lean rats but not in obese rats. The decrease in food intake was also more marked at higher caerulein doses (20–100 μg/kg) in lean versus obese rats. In lean animals the satiety effects of the “near physiological” 4 μg/kg caerulein dose was abolished after blockade of vagal afferents with capsaicin, whereas the effects of higher caerulein doses were not. CCK-stimulated amylase secretion from pancreatic acini and binding capacity of 125I- labelled CCK-8 were decreased in obese versus lean rats. The CCK-A antagonist loxiglumide at 20 mg/kg, a dose which abolished the action of all caerulein doses on food intake, failed to alter the food intake either in obese or in lean rats when given without an agonist. The results suggest that the satiety effects of “near physiological” doses of caerulein in lean rats are mediated by vagal afferents whereas pharmacological doses act via non-vagal mechanisms. The differences in CCK's satiety effect between lean and obese rats may be due to differences in CCK-receptor binding and action at peripheral vagal sites. However, the failure of the CCK-A antagonist to increase food intake questions whether any of the effects of exogenous CCK are of physiological relevance.  相似文献   

20.
Essential hypertension is associated with an increased incidence of insulin resistance of skeletal muscle glucose transport. The present study determined if celiprolol, an antihypertensive agent with selective beta1-adrenoceptor antagonist and additional beta2-agonistic properties, administered by gavage either acutely (3 hr) or chronically (14 d), had a direct effect on improving glucose tolerance and insulin-stimulated glucose transport activity (using 2-deoxyglucose (2-DG) uptake) in isolated epitrochlearis muscles of the insulin-resistant obese Zucker rat. The effects of a selective beta1-blocker, metoprolol, were also assessed. Acute administration of celiprolol, but not metoprolol, increased insulin-stimulated 2-DG uptake in muscle by 22% (p<0.05). Chronic celiprolol treatment significantly lowered fasting plasma insulin (22%) and free fatty acids (40%) in comparison to obese control values. Moreover, chronic celiprolol administration decreased the glucose-insulin index (calculated as the product of the glucose and insulin areas under the curve during an oral glucose tolerance test), by 32% (p<0.05) compared to obese controls, indicating that peripheral insulin action was increased. Indeed, insulin-stimulated skeletal muscle 2-DG uptake was enhanced by 49% (p<0.05) in these celiprolol-treated obese animals. Metoprolol was without significant effect on any of these variables following chronic administration. These findings indicate that, in this animal model of insulin resistance, the beta1-antagonist/beta2-agonist celiprolol has a specific effect of improving insulin-stimulated skeletal muscle glucose transport that is independent of any hemodynamic alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号