首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gamogony of Theileria annulata Dschunkowsky & Luhs occurs within the intestine of nymphs of the tick Hyalomma anatolicum excavatum Koch. After the 5th day post repletionem (p.r.) of the ticks spherical and ovoid parasites were found within the intestinal cells. These stages were thought to represent fertilized macrogametes. These underwent a transformation process leading ultimately to the differentiation of a motile stage, the kinete, which leaves the intestinal cells on the 14th-17th day p.r. and penetrates the alveoles of the salivary glands. The transformation of the stationary into a motile stage takes place by formation of a growing protrusion (= anlage) into an inner, enlarging vacuole. During this process the limiting membrane of the vacuole serves as the outer membrane of the developing motile stage, whereas the 2 inner membranes of its pellicle are newly formed. The steps of this differentiation in T. annulata are compared to the process of ookinete formation in haemosporina.  相似文献   

2.
SYNOPSIS. Gamogony of Theileria ovis Rodhain occurs within the gut of nymphs of the tick Rhipicephalus evertsi evertsi Neumann. After molting, spherical and ovoid parasites are found within the intestinal cells of the ticks. These stages are thought to be zygotes, because they undergo a transformation process leading ultimately (in 3 days) to the formation of a motile stage, the kinete , the fine structure of which is very similar to that of the ookinetes of the hemosporidia. The kinete leaves the gut cells of the tick and penetrates the salivary gland cells where it produces infective stages (the sporozoites ). These stages may be transmitted to sheep during the next blood meal of the tick. The developmental processes of T. ovis are compared to those of Hemosporina.  相似文献   

3.
Gamogony of Theileria ovis Rodhain occurs within the gut of nymphs of the tick Rhipicephalus evertsi evertsi Neumann. After molting, spherical and ovoid parasites are found within the intestinal cells of the ticks. These stages are thought to be zygotes, because they undergo a transformation process leading ultimately (in 3 days) to the formation of a motile stage, the kinete, the fine structure of which is very similar to that of the ookinetes of the hemosporidia. The kinete leaves the gut cells of the tick and penetrates the salivary gland cells where it produces infective stages (the sporozoites). These stages may be transmitted to sheep during the next blood meal of the tick. The developmental processes of T. ovis are compared to those of Hemosporina.  相似文献   

4.
Photoreceptor cell differentiation was investigated in a dissociated monolayer culture of chick embryonic retinas with electron microscopic immunohistochemistry. The antibody was raised against bovine rhodopsin purified on SDS-polyacrylamide gel electrophoresis. In the developing retina, immunoreactivity was first recognized on the 14th day of incubation and was localized on the plasma membrane of the growing inner segment. On the 16th day, immunoreactivity was observed on some differentiating outer segments but not on inner segments. In the culture from 6 1/2-day-old embryonic retinas, immunoreactivity was found on the 7th day of culturing on the plasma membrane of large-sized neurons. Electron microscopic observations confirmed that such stained cells showed reaction product on the plasma membrane, and that they displayed fine structures characteristic of intact photoreceptor cells. They had a number of microvillous processes and often one thick process, both of which were intensely stained. Outer segment formation, however, was not observed in the present monolayer culture. These results indicate that opsin synthesis and its transport to the plasma membrane begins prior to and probably independently of outer segment formation.  相似文献   

5.
Zheng H  Staehelin LA 《Plant physiology》2011,155(4):2023-2035
We have investigated the structural events associated with vacuole biogenesis in root tip cells of tobacco (Nicotiana tabacum) seedlings preserved by high-pressure freezing and freeze-substitution techniques. Our micrographs demonstrate that the lytic vacuoles (LVs) of root tip cells are derived from protein storage vacuoles (PSVs) by cell type-specific sets of transformation events. Analysis of the vacuole transformation pathways has been aided by the phytin-dependent black osmium staining of PSV luminal contents. In epidermal and outer cortex cells, the central LVs are formed by a process involving PSV fusion, storage protein degradation, and the gradual replacement of the PSV marker protein α-tonoplast intrinsic protein (TIP) with the LV marker protein γ-TIP. In contrast, in the inner cortex and vascular cylinder cells, the transformation events are more complex. During mobilization of the stored molecules, the PSV membranes collapse osmotically upon themselves, thereby squeezing the vacuolar contents into the remaining bulging vacuolar regions. The collapsed PSV membranes then differentiate into two domains: (1) vacuole "reinflation" domains that produce pre-LVs, and (2) multilamellar autophagosomal domains that are later engulfed by the pre-LVs. The multilamellar autophagosomal domains appear to originate from concentric sheets of PSV membranes that create compartments within which the cytoplasm begins to break down. Engulfment of the multilamellar autophagic vacuoles by the pre-LVs gives rise to the mature LVs. During pre-LV formation, the PSV marker α-TIP disappears and is replaced by the LV marker γ-TIP. These findings demonstrate that the central LVs of root cells arise from PSVs via cell type-specific transformation pathways.  相似文献   

6.
Autophagy is a degradative pathway by which cells sequester nonessential, bulk cytosol into double-membrane vesicles (autophagosomes) and deliver them to the vacuole for recycling. Using this strategy, eukaryotic cells survive periods of nutritional starvation. Under nutrient-rich conditions, autophagy machinery is required for the delivery of a resident vacuolar hydrolase, aminopeptidase I, by the cytoplasm to vacuole targeting (Cvt) pathway. In both pathways, the vesicle formation process requires the function of the starvation-induced Aut7 protein, which is recruited from the cytosol to the forming Cvt vesicles and autophagosomes. The membrane binding of Aut7p represents an early step in vesicle formation. In this study, we identify several requirements for Aut7p membrane association. After synthesis in the cytosol, Aut7p is proteolytically cleaved in an Aut2p-dependent manner. While this novel processing event is essential for Aut7p membrane binding, Aut7p must undergo additional physical interactions with Aut1p and the autophagy (Apg) conjugation complex before recruitment to the membrane. Lack of these interactions results in a cytosolic distribution of Aut7p rather than localization to forming Cvt vesicles and autophagosomes. This study assigns a functional role for the Apg conjugation system as a mediator of Aut7p membrane recruitment. Further, we demonstrate that Aut1p, which physically interacts with components of the Apg conjugation complex and Aut7p, constitutes an additional factor required for Aut7p membrane recruitment. These findings define a series of steps that results in the modification of Aut7p and its subsequent binding to the sequestering transport vesicles of the autophagy and cytoplasm to vacuole targeting pathways.  相似文献   

7.
The report described the ultrastructural changes that occurred in the major veins and their associated bundle sheaths (BS) of the maize ( Zea mays L. ) leaf blade in the process of their differentiation from three adjacent cells in the middle layer of the ground meristem, the minimal number of cells involved with the initiation of a procambial strand and the associated BS. The inner cell underwent two successive unequal periclinal divisions: a smaller cell that later differentiated into the adaxial BS cell precursor, and a larger one that divided once again periclinally yielding an abaxial BS cell precursor and a centrally located procambial initial cell. One of the two lateral cells immediately adjacent to either side of the inner cell also divided periclinally; these derivatives, along with another lateral cell of the original three-celled unit formed the precursor cells of the lateral BS. Prior to the initiation of protophlcem differentiation, all of the procambial cells showed ultrastructural characteristics basically similar to the procambial initial. They possessed a prominent nucleus with electron-dense aggregates of heterochromatin, a dense cytoplasm rich in ribosomes, proplastids and mitochondria; also a thin wall containing numerous plasmodesmata. In many cases, only short pieces of rough endoplasmic reticulum cistemae and a few small sized vacuoles were present. In adclifton, evidence of cytoplasmic disintegration leading to new vacuole formation was noted in the process of proeambium development. It was observed that certain endoplasmic reticulum was engaged in the sequestration and lysis of cytoplasm. No apparent uhrastmctuml difference was found between the BS cell precursors and the procambial initials, that was, the distinction between the procambium and the surrounding BS cells occurred gradually after vein initiation, The major ultrastmctural changes which occurred during the differentiation of the meristematic BS cells into the vacuolated cells were (1) a proplastid to chloroplast transformation going through a prolamellar body stage, and (2) the appearance of the multi-concentric membrane complex which might play a role in the degradation of some ribosomes and other cytoplasmic components during the differentiation of BS cells.  相似文献   

8.
In the slug of the cellular slime mold, Dictyostelium discoideum , are differentiated the anterior prestalk cells and the posterior prespore cells, whose differentiation is characterized by formation of the prespore specific vacuole (PSV). The ultrastructural changes of the PSV were investigated during dedifferentiation of a prespore cell disaggregated from a slug and also during conversion of the cell type, caused by fragmentation of a slug, between the prespore and the prestalk cells.
During the dedifferentiation, the PSV first lost its lining membrane which subsequently congregated, together with the inner filamentous material, to form some electron dense granules. Finally, the vacuole membrane was punctured, and the granules were released into cytoplasm. During conversion of the prespore to the prestalk cell, the PSV was degraded through the same process as in dedifferentiation, but the degradation proceeded much more synchronously in a converting cell. When a prestalk fragment was isolated from a slug, formation of the PSV was detected in no cell until 2 hr of incubation. After a lag, the PSV was formed in a converting cell through the process which is not a simple reversal of its degrading process.  相似文献   

9.
Large vacuoles are characteristic of plant and fungal cells, and their origin has long attracted interest. The cellular slime mould provides a unique opportunity to study the de novo formation of vacuoles because, in its life cycle, a subset of the highly motile animal-like cells (prestalk cells) rapidly develops a single large vacuole and cellulosic cell wall to become plant-like cells (stalk cells). Here we describe the origin and process of vacuole formation using live-imaging of Dictyostelium cells expressing GFP-tagged ammonium transporter A (AmtA-GFP), which was found to reside on the membrane of stalk-cell vacuoles. We show that stalk-cell vacuoles originate from acidic vesicles and autophagosomes, which fuse to form autolysosomes. Their repeated fusion and expansion accompanied by concomitant cell wall formation enable the stalk cells to rapidly develop turgor pressure necessary to make the rigid stalk to hold the spores aloft. Contractile vacuoles, which are rich in H+-ATPase as in plant vacuoles, remained separate from these vacuoles. We further argue that AmtA may play an important role in the control of stalk-cell differentiation by modulating the pH of autolysosomes.  相似文献   

10.
Keil TA  Steiner C 《Tissue & cell》1991,23(6):821-851
During adult development of the male silkmoth Antheraea polyphemus, the anlagen of olfactory sensilla arise within the first 2 days post-apolysis in the antennal epidermis (stage 1-3). Approximately on the second day, the primary dendrites as well as the axons grow out from the sensory neurons (stage 4). The trichogen cells start to grow apical processes approximately on the third day, and these hair-forming 'sprouts' reach their definite length around the ninth day (stages 5-6). Then the secretion of cuticle begins, the cuticulin layer having formed on day 10 (stage 7a). The primary dendrites are shed, the inner dendritic segments as well as the thecogen cells retract from the prospective hair bases, and the inner tormogen cells degenerate around days 10/11 (stage 7b). The hair shafts of the basiconic sensilla are completed around days 12/13 (stage 7c), and those of the trichoid sensilla around days 14/15 (stage 7d). The trichogen sprouts retract from the hairs after having finished cuticle formation, and the outer dendritic segments grow out into the hairs: in the basiconic sensilla directly through, and in the trichoid sensilla alongside, the sprouts. The trichogen sprouts contain numerous parallel-running microtubules. Besides their cytoskeletal function, these are most probably involved in the transport of membrane vesicles. During the phase of cuticle deposition, large numbers of vesicles are transported anterogradely from the cell bodies into the sprouts, where they fuse with the apical cell membrane and release their electron-dense contents (most probably cuticle precursors) to the outside. As the cuticle grows in thickness, the surface area of the sprouts is reduced by endocytosis of coated vesicles. When finally the sprouts retract from the completed hairs, the number of endocytotic vesicles is further increased and numerous membrane cisterns seem to be transported retrogradely along the microtubules to the cell bodies. Here the membrane material will most probably be used again in the formation of the sensillum lymph cavities. Thus, the trichogen cells are characterized by an intensive membrane recycling. The sensillum lymph cavities develop between days 16-20 (stage 8), mainly via apical invaginations of the trichogen cells. The imago emerges on day 21.  相似文献   

11.
During a summer cruise to the Ross Sea (Antarctica) areas of snow‐covered sea ice were red‐coloured due to high concentrations of the recently described Pyramimonas tychotreta Daugbjerg. Light microscopy of living material revealed that the population was comprised of quadriflagellate motile cells and thick‐walled cysts. The red colour was due to large numbers of secondary carotenoid‐containing granules, positioned in the periphery of motile cells and cysts. Mature cysts also contained numerous starch grains and lipid droplets. Cells from a red‐coloured field sample turned green overnight as the secondary carotenoids disappeared when cells were placed in low light conditions. The sample then exhibited the typical grass‐green colour of motile cells observed in water samples from the area. Under reduced light motile cells showed strong positive phototaxis. The encystment process involved the asexual transformation of quadriflagellate cells into cysts. A single type of square cyst scale, with perforated floors and walls, replaced the body scales of motile cells. A marked extension, often ending in a hook was at each corner of the cyst scales. Germinating cysts produced four motile cells. Electron microscopy showed the cyst wall to be tri‐layered, with a thin, electron‐dense inner layer, a thick middle layer and a thin outer layer. Sea ice samples with dense populations of motile cells and cyst stages also contained elongate uniflagel‐late cells. These cells were covered with box scales, foot‐print scales, an underlayer of pentagonal scales, limuloid scales and flagellar hair scales identical to those present on the quadriflagellate stage. We tentatively suggest that the uniflagellate stage represents a gamete and its presence implies the occurrence of sexual reproduction. Although, fusion of gametes was not observed, a biflagellate cell with a larger volume was seen which may have been a zygote. How this stage fits into of the life history remains to be explained.  相似文献   

12.
Michael W. Hess 《Planta》1993,189(1):139-149
The structure and development of the inner pectocellulosic pollen wall, the intine, was re-examined using high-pressure freezing with subsequent freeze substitution in Ledebouria socialis Roth, a monocotyledonous angiosperm. The bilayered intine is formed immediately after differentiation of the endexine. Similar to somatic cell walls, intine matrix substances originate from the Golgi apparatus and leave the cytoplasm via exocytosis. Exintine development starts with the apposition of intine matrix substances to the inner polysaccharide layer of the endexine (termed inner endexine), leading to irregular cell-wall ingrowths. Subsequently the inner endexine becomes intensely infiltrated with intine matrix substances; this process is interpreted as transformation of the inner endexine into intine. Along the aperture region, cell-wall matrix substances are unevenly deposited to such an extent that more or less radially oriented tubules filled with cytoplasm remain within the growing exintine. These tubules subsequently become cut off from the microspore cytoplasm by selective membrane fusions, leading to the incorporation of ground cytoplasm and ribosomes into the exintine. Exintine formation is completed prior to the first mitotic division of the pollen grain whereas the endintine is formed as a homogeneous thin layer after mitosis. Both transformation of the inner endexine by infiltration and passive incorporation of cytoplasm and ribosomes into the exintine by membrane fusions are novel features and are only observed in optimally freeze-fixed, freeze-substituted samples; general aspects of ultrastructure preservation in high-pressure-frozen, freeze-substituted plant cells are discussed as well. Modifications of the Golgi apparatus and post-Golgi-apparatus structures during pollen wall development are correlated with increasing and decreasing polysaccharide exocytosis, respectively. These evenls strictly coincide with the formation of morphologically and chemically different pollen wall layers and therefore seem to reflect the different deposition patterns of the predominant cell-wall polysaccharides.Abbreviations ER endoplasmic reticulum - FS freeze substitution - HPF high-pressure freezing - MS microspore(s) - PATAg periodic acid-thiocarbohydrazine-silver proteinate - PGS post-Golgi-apparatus structures - UA-Pb uranyl acetatelead I am grateful to Dr. Martin Müller (Institut für Zellbiologie, ETH-Zürich) for the kind permission to use the high-pressure freezer and the freeze-substitution unit at his laboratory. I wish to thank Prof. M. Hesse, Mag. M.G. Schlag (Institut für Botanik, Universität Wien) and Dr. I. Lichtscheidl (Institut für Pflanzenphysiologie, Universität Wien) for helpfull discussions. Thanks are also due to A. Glaser and W. Urbancik for excellent technical assistence and to the Stadtgärtnerei Zürich for providing the plant material. This work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

13.
Adult Leydig cells originate within the testis postnatally. Their formation is a continuous process involving gradual transformation of progenitors into the mature cell type. Despite the gradual nature of these changes, studies of proliferation, differentiation and steroidogenic function in the rat Leydig cell led to the recognition of three distinct developmental stages in the adult Leydig cell lineage: Leydig cell progenitors, immature Leydig cells and adult Leydig cells. In the first stage, Leydig cell progenitors arise from active proliferation of mesenchymal-like stem cells in the testicular interstitium during the third week of postnatal life and are recognizable by the presence of Leydig cell markers such as histochemical staining for 3β-hydroxysteroid dehydrogenase (3β-HSD) and the present of luteinizing hormone (LH) receptors. They proliferate actively and by day 28 postpartum differentiate into immature Leydig cells. In the second stage, immature Leydig cells are morphologically recognizable as Leydig cells. They have an abundant smooth endoplasmic reticulum and are steroidogenically active, but primarily produce 5-reduced androgens rather than testosterone. Immature Leydig cells divide only once, giving rise to the total adult Leydig cell population. In the third and final stage, adult Leydig cells are fully differentiated, primarily produce testosterone and rarely divide. LH and androgen act together to stimulate differentiation of Leydig cell progenitors into immature Leydig cells. Preliminary data indicate that insulin like growth factor-1 (IGF-1) acts subsequently in the transformation of immature Leydig cells into adult Leydig cells.  相似文献   

14.
Fieran  B. A. 《Protoplasma》1971,72(1):1-18
Summary Vacuoles in plant cells often contain inclusions which at early stages of development are bounded by a single membrane. The inclusion bodies (IBs) comprise a diversity of forms and various stages of differentiation are recognizable. IBs are divided into two categories: those which have a matrix without internal membranes, and those which contain cytoplasmic organelles and other membranous material. The internal membranes may be tightly coiled or in the form of vesicles. IBs develop from invaginations of the tonoplast which become detached into the vacuole. They are initiated mainly during active cell growth but may remain within the vacuole in differentiated cells. Various components contribute to the contents of IBs: endoplasmic reticulum, nuclear envelope, Golgi vesicles, extruded portions of mitochondria and plastids, ribosomes and groundplasm. In most IBs the limiting membrane and contents eventually disappear within the vacuole. Some IBs prior to their breakdown within the vacuole also function as sites for the formation of material not found elsewhere in the cell. The disappearance of IBs from vacuoles suggests that such vacuoles behave as lysosomes.  相似文献   

15.
A key step in the pathogenesis of shigellosis is the capacity of the causative bacteria, shigellae, to invade colonic and rectal epithelial cells in humans. This invasive process encompasses several steps: entry into epithelial cells by induction of a macropinocytic event caused by secreted Ipa proteins. The bacterium then escapes from the vacuole and reaches the cytoplasmic compartment in which it divides rapidly and becomes motile via the expression of a surface protein, IcsA, whose polar localization achieves directed polymerization of actin filaments that push the bacterial body forward. Bacteria then engage the inner face of the cellular membrane in the junctional area and form protrusions allowing their passage into the adjacent cell. Lysis of the double membrane eventually allows access to the cytoplasmic compartment of the adjacent cell, thus providing the bacterium with a very efficient mechanism of epithelial colonization.  相似文献   

16.
Electron microscope studies of the inner membrane of developing eggs of T. megalocephala were carried out. At early developmental stages the inner membrane is a syncytial cytoplasmatic layer lying on the basal plate of the embryo. At the preoncosphere stage the division of the membrane into two zones (external and internal ones) takes place. Initially the differentiation manifests itself in the cytoplasm polarisation; at the end of the middle preoncosphere stage the zones are divided by the "oncosphere membrane". The formation of the "oncosphere membrane" is accomplished by the external part of the internal zone. Embryophore is a derivative of the external zone, at the final stages of the formation the embryophore material is transformed from granular into thin-fibrillary. The origin of the external integument of oncospheres of cyclophillids, which, as it has been shown for T. megalocephala, is a derivative of the inner membrane rather than of specialized epithelial oncosphere cells, is considered.  相似文献   

17.
Transfection of Mv1Lu mink lung type II alveolar cells with beta1-6-N-acetylglucosaminyl transferase V is associated with the expression of large lysosomal vacuoles, which are immunofluorescently labeled for the lysosomal glycoprotein lysosomal-associated membrane protein-2 and the beta1-6-branched N-glycan-specific lectin phaseolis vulgaris leucoagglutinin. By electron microscopy, the vacuoles present the morphology of multilamellar bodies (MLBs). Treatment of the cells with the lysosomal protease inhibitor leupeptin results in the progressive transformation of the MLBs into electron-dense autophagic vacuoles and eventual disappearance of MLBs after 4 d of treatment. Heterologous structures containing both membrane lamellae and peripheral electron-dense regions appear 15 h after leupeptin addition and are indicative of ongoing lysosome-MLB fusion. Leupeptin washout is associated with the formation after 24 and 48 h of single or multiple foci of lamellae within the autophagic vacuoles, which give rise to MLBs after 72 h. Treatment with 3-methyladenine, an inhibitor of autophagic sequestration, results in the significantly reduced expression of multilamellar bodies and the accumulation of inclusion bodies resembling nascent or immature autophagic vacuoles. Scrape-loaded cytoplasmic FITC-dextran is incorporated into lysosomal-associated membrane protein-2-positive MLBs, and this process is inhibited by 3-methyladenine, demonstrating that active autophagy is involved in MLB formation. Our results indicate that selective resistance to lysosomal degradation within the autophagic vacuole results in the formation of a microenvironment propicious for the formation of membrane lamella.  相似文献   

18.
The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.  相似文献   

19.
Autophagy is a process that involves the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system. In the yeast, Saccharomyces cerevisiae, an autophagosome is formed in the cytosol. The outer membrane of the autophagosome is fused with the vacuole, releasing the inner membrane structure, an autophagic body, into the vacuole. The autophagic body is subsequently degraded by vacuolar hydrolases. Taking advantage of yeast genetics, apg (autophagy-defective) mutants were isolated that are defective in terms of formation of autophagic bodies under nutrient starvation conditions. One of the APG gene products, Apg12p, is covalently attached to Apg5p via the C-terminal Gly of Apg12p as in the case of ubiquitylation, and this conjugation is essential for autophagy. Apg7p is a novel E1 enzyme essential for the Apg12p-conjugation system. In mammalian cells, the human Apg12p homolog (hApg12p) also conjugates with the human Apg5p homolog. In this study, the unique characteristics of hApg7p are shown. A two-hybrid experiment indicated that hApg12p interacts with hApg7p. Site-directed mutagenesis revealed that Cys(572) of hApg7p is an authentic active site cysteine residue essential for the formation of the hApg7p.hApg12p intermediate. Overexpression of hApg7p enhances the formation of the hApg5p.hApg12p conjugate, indicating that hApg7p is an E1-like enzyme essential for the hApg12p conjugation system. Cross-linking experiments and glycerol-gradient centrifugation analysis showed that the mammalian Apg7p homolog forms a homodimer as in yeast Apg7p. Each of three human Apg8p counterparts, i.e. the Golgi-associated ATPase enhancer of 16 kDa, GABA(A) receptor-associated protein, and microtubule-associated protein light chain 3, coimmunoprecipitates with hApg7p and conjugates with mutant hApg7p(C572S) to form a stable intermediate via an ester bond. These results indicate that hApg7p is an authentic protein-activating enzyme for hApg12p and the three Apg8p homologs.  相似文献   

20.
Invasive forms of apicomplexan parasites contain secretory organelles called rhoptries that are essential for entry into host cells. We present a detailed characterization of an unusual rhoptry protein of the human malaria parasite Plasmodium falciparum, the rhoptry-associated membrane antigen (RAMA) that appears to have roles in both rhoptry biogenesis and host cell invasion. RAMA is synthesized as a 170-kDa protein in early trophozoites, several hours before rhoptry formation and is transiently localized within the endoplasmic reticulum and Golgi within lipid-rich microdomains. Regions of the Golgi membrane containing RAMA bud to form vesicles that later mature into rhoptries in a process that is inhibitable by brefeldin A. Other rhoptry proteins such as RhopH3 and RAP1 are found in close apposition with RAMA suggesting direct protein-protein interactions. We suggest that RAMA is involved in trafficking of these proteins into rhoptries. In rhoptries, RAMA is proteolytically processed to give a 60-kDa form that is anchored in the inner face of the rhoptry membrane by means of the glycosylphosphatidylinositol anchor. The p60 RAMA form is discharged from the rhoptries of free merozoites and binds to the red blood cell membrane by its most C-terminal region. In early ring stages RAMA is found in association with the parasitophorous vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号