首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular phosphorylation in the parasite, Leishmania major   总被引:2,自引:0,他引:2  
Intact promastigotes or cell-free extracts of the parasite Leishmania major were labelled with adenosine 5'[gamma-32P]-triphosphate (ATP). This resulted in the identification of eleven phosphoproteins. [gamma-32P]ATP incorporation into endogenous and exogenous substrates was insensitive to most of the commonly used protein kinase inhibitors and activators indicating that the leishmanial enzyme(s) may represent a new class of kinase(s). In addition, exogenous substrate specificity was inconsistent with the preferences of second messenger-dependent protein kinases. Cyclic AMP had differential effects on phosphorylation in intact cells and lysates. The majority of kinase activity could be attributed to an externally oriented membrane-associated protein kinase(s), as no specific cytosolic phosphoproteins were found and intact cells phosphorylated exogenous substrates. Labelled ATP did not cross the membrane and [alpha-32P]ATP was an unsuitable substrate for the phosphorylation activity. The ectokinase activity on live Leishmania exhibited a different substrate preference when compared to the protein kinase activity in the particulate fraction, suggesting that more than one protein kinase may be present in L. major. Three serine-labelled phosphoproteins were specifically released into the medium. The presence of an ecto-kinase and these released phosphoproteins may play a significant role in host-parasite interactions.  相似文献   

2.
We identified a Leishmania major‐specific gene that can partly compensate for the loss of virulence observed for L. major HSP100 null mutants. The gene, encoding a 46 kD protein of unknown function and lineage, also enhances the virulence of wild type L. major upon overexpression. Surprisingly, the approximately sixfold overexpression of this protein also extends the host range of L. major to normally resistant C57BL/6 mice, causing persisting lesions in this strain, even while eliciting a strong cellular immune response. This enhanced virulence in vivo is mirrored in vitro by increased parasite burden inside bone marrow‐derived macrophages. The localization of the protein in the macrophage cytoplasm suggests that it may modulate the macrophage effector mechanisms. In summary, our data show that even minor changes of gene expression in L. major may alter the outcome of an infection, regardless of the host's genetic predisposition.  相似文献   

3.
Previous studies provided evidence that the role of TNF in the control of Leishmania (Leishmania) major might vary with the parasite strain. Here, we analyzed the development and outcome of cutaneous leishmaniasis in C57BL/6 wild-type (B6.WT) and TNF-deficient (B6. TNF(-/-)) mice infected with two different isolates of L. (L.) major (FRIEDLIN vs. BNI). L. (L.) major BNI caused progressive, fatal disease in B6.TNF(-/-) mice. In contrast, B6.TNF(-/-) mice infected with the L. (L.) major FRIEDLIN strain exhibited partial resistance characterized by chronic, non-healing skin lesions without lethality. Analysis of the tissue parasite numbers showed that the numbers of L. (L.) major FRIEDLIN and BNI parasites were comparable in footpads and lymph nodes of B6.TNF(-/-) mice, whereas in the spleen the parasite numbers were strikingly lower in the case of L. (L.) major FRIEDLIN. In vitro, cytokine-activated inflammatory macrophages killed L. (L.) major FRIEDLIN more efficiently than L. (L.) major BNI. These results suggest that in the absence of TNF, the course of leishmaniasis depends on the biology of the inoculated L. (L.) major strain, which most likely explains the previously published discrepant results on the role of TNF in leishmaniasis.  相似文献   

4.
Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major . Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with K is between 7.7 and 83 nM. L. major ISP2–ISP3 double null mutants (Δ isp 2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Δ isp 2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Δ isp 2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Δ isp 2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host.  相似文献   

5.
Elimination of pathogens is the basis of host resistance to infections; however, relationship between persisting pathogens and disease has not been clarified. Leishmania major infection in mice is an important model of host–pathogen relationship. Infected BALB/c mice exhibit high parasite numbers in lymph nodes and spleens, and a chronic disease with skin lesions, splenomegaly, and hepatomegaly, increased serum IgE levels and cytokine imbalance. Although numerous gene loci affecting these disease symptoms have been reported, genes controlling parasites’ elimination or dissemination have never been mapped. We therefore compared genetics of the clinical and immunologic symptomatology with parasite load in (BALB/c?×?CcS-11) F2 hybrids and mapped five loci, two of which control parasite elimination or dissemination. Lmr5 influences parasite loads in spleens (and skin lesions, splenomegaly, and serum IgE, IL-4, and IFNγ levels), and Lmr20 determines parasite numbers in draining lymph nodes (and serum levels of IgE and IFNγ), but no skin or visceral pathology. Three additional loci do not affect parasite numbers but influence significantly the disease phenotype—Lmr21: skin lesions and IFNγ levels, Lmr22: IL-4 levels, Lmr23: IFNγ levels, indicating that development of L. major-caused disease includes critical regulations additional to control of parasite spread.  相似文献   

6.
Diphenylamine (DPA) is an antioxidant compound that occurs naturally in several vegetables. It is widely applied in agriculture for preservation of the quality of apples and pears, and used for controlling superficial scald, a disorder that renders fruits of a number of apple cultivars unfit for the market. Because of its anti-oxidative properties, DPA also has several industrial applications. The potential genotoxic effect of DPA on human lymphocytes has previously been investigated in only two studies, which focused on detection of chromosome aberrations and sister chromatid exchange, respectively. In the present analysis, we evaluated micronucleus (MN) formation in freshly isolated human peripheral lymphocytes exposed to different concentrations (0.625, 1.25, 2.50, 5.0 and 10.0μg/ml) of DPA. Peripheral venous blood was collected from ten healthy subjects, and a total of 10,000 bi-nucleated cells were analyzed. Results indicated that DPA significantly increased the micronucleus frequency at concentrations of 1.25μg/ml and higher. Significant differences in the MN frequency were also found between the lower dose (0.625μg/ml) and all other doses tested, with the exception of 1.25μg/ml. Our results indicate a potential cytogenetic effect of DPA on human cells in vitro and require further in vivo studies to clarify the actual genotoxicity of this compound and the consequent risks for human health.  相似文献   

7.
AIM To investigate the modulatory effect of B-1 cells on murine peritoneal macrophages infected with Leishmania major(L. major) in vitro.METHODS Peritoneal macrophages obtained from BALB/c andBALB/c XID mice were infected with L. major and cultured in the presence or absence of B-1 cells obtained from wild-type BALB/c mice. Intracellular amastigotes were counted, and interleukin-10(IL-10) production was quantified in the cellular supernatants using an enzymelinked immunosorbent assay. The levels of the lipid mediator prostaglandin E2(PGE2) were determined using a PGE2 enzyme immunoassay kit(Cayman Chemical, Ann Arbor, MI), and the number of lipid bodies was quantified in the cytoplasm of infected macrophages in the presence and absence of B-1 cells. Culturing the cells with selective PGE2-neutralizing drugs inhibited PGE2 production and confirmed the role of this lipid mediator in IL-10 production. In contrast, we demonstrated that B-1 cells derived from IL-10 KO mice did not favor the intracellular growth of L. major.RESULTS We report that B-1 cells promote the growth of L. major amastigotes inside peritoneal murine macrophages. We demonstrated that the modulatory effect was independent of physical contact between the cells, suggesting that soluble factor(s) were released into the cultures. We demonstrated in our co-culture system that B-1 cells trigger IL-10 production by L. major-infected macrophages. Furthermore, the increased secretion of IL-10 was attributed to the presence of the lipid mediator PGE2 in supernatants of L. major-infected macrophages. The presence of B-1 cells also favors the production of lipid bodies by infected macrophages. In contrast, we failed to obtain the same effect on parasite replication inside L. major-infected macrophages when the B-1 cells were isolated from IL-10 knockout mice. CONCLUSION Our results show that elevated levels of PGE2 and IL-10 produced by B-1 cells increase L. major growth, as indicated by the number of parasites in cell cultures.  相似文献   

8.
We have identified and characterized a Macrophage Migration Inhibitory Factor (MIF) family member in the Lophotrochozoan invertebrate, Biomphalaria glabrata, the snail intermediate host of the human blood fluke Schistosoma mansoni. In mammals, MIF is a widely expressed pleiotropic cytokine with potent pro-inflammatory properties that controls cell functions such as gene expression, proliferation or apoptosis. Here we show that the MIF protein from B. glabrata (BgMIF) is expressed in circulating immune defense cells (hemocytes) of the snail as well as in the B. glabrata embryonic (Bge) cell line that has hemocyte-like features. Recombinant BgMIF (rBgMIF) induced cell proliferation and inhibited NO-dependent p53-mediated apoptosis in Bge cells. Moreover, knock-down of BgMIF expression in Bge cells interfered with the in vitro encapsulation of S. mansoni sporocysts. Furthermore, the in vivo knock-down of BgMIF prevented the changes in circulating hemocyte populations that occur in response to an infection by S. mansoni miracidia and led to a significant increase in the parasite burden of the snails. These results provide the first functional evidence that a MIF ortholog is involved in an invertebrate immune response towards a parasitic infection and highlight the importance of cytokines in invertebrate-parasite interactions.  相似文献   

9.
In Leishmania major a 100-kDa heat shock protein, Hsp100, is abundant in the intracellular amastigote stage which persists in the mammalian host. A replacement of both clpB alleles which encode Hsp100 does not affect promastigote viability under standard culture conditions but impairs thermotolerance in vitro. In experimental infections of BALB/c inbred mice, the lack of Hsp100 in the gene replacement mutants results in a markedly delayed lesion development compared with that in infections with wild-type L. major. Overexpression of exogenous clpB gene copies can partly restore virulence to the gene replacement mutants. Genetic-selection experiments also reveal a strong pressure for Hsp100 expression in the mammalian stage. This requirement for Hsp100 was also observed in in vitro infection experiments with mouse peritoneal macrophages. These experiments indicated a role for Hsp100 during the development from the promastigote to the amastigote stage. Our results suggest an important role for this parasite heat shock protein during the initial stages of a mammalian infection.  相似文献   

10.
The proteins that mediate polyamine translocation into eukaryotic cells have not been identified at the molecular level. To define the polyamine transport pathways in eukaryotic cells we have cloned a gene, LmPOT1, that encodes a polyamine transporter from the protozoan pathogen, Leishmania major. Sequence analysis of LmPOT1 predicted an unusual 803-residue polytopic protein with 9-12 transmembrane domains. Expression of LmPOT1 cRNA in Xenopus laevis oocytes revealed LmPOT1 to be a high affinity transporter for both putrescine and spermidine, whereas expression of LmPOT1 in Trypanosoma brucei stimulated putrescine uptake that was sensitive to inhibition by pentamidine and proton ionophores. Immunoblot analysis established that LmPOT1 was expressed predominantly in the insect vector form of L. major, and immunofluorescence demonstrated that LmPOT1 was localized predominantly to the parasite plasma membrane. To our knowledge this is the first molecular identification and characterization of a cell surface polyamine transporter in eukaryotic cells.  相似文献   

11.
Deciphering molecular interactions between the malaria parasite and its mosquito vector is an emerging area of research that will be greatly facilitated by the recent sequencing of the genomes of Anopheles gambiae mosquito and of various Plasmodium species. So far, most such studies have focused on Plasmodium berghei, a parasite species that infects rodents and is more amenable to studies. Here, we analysed the expression pattern of nine An.gambiae genes involved in immune surveillance during development of the human malaria parasite P.falciparum in mosquitoes fed on parasite-containing blood from patients in Cameroon. We found that P.falciparum ingestion triggers a midgut-associated, as well as a systemic, response in the mosquito, with three genes, NOS, defensin and GNBP, being regulated by ingestion of gametocytes, the infectious stage of the parasite. Surprisingly, we found a different pattern of expression of these genes in the An.gambiae-P.berghei model. Therefore, differences in mosquito reaction against various Plasmodium species may exist, which stresses the need to validate the main conclusions suggested by the P.berghei-An.gambiae model in the P.falciparum-An.gambiae system.  相似文献   

12.
For the human pathogen Leishmania major, a key metabolic function is the synthesis of thymidylate, which requires 5,10-methylenetetrahydrofolate (5,10-CH(2)-THF). 5,10-CH(2)-THF can be synthesized from glycine by the mitochondrial glycine cleavage complex (GCC). Bioinformatic analysis revealed the four subunits of the GCC in the L. major genome, and the role of the GCC in parasite metabolism and virulence was assessed through studies of the P subunit (glycine decarboxylase (GCVP)). First, a tagged GCVP protein was expressed and localized to the parasite mitochondrion. Second, a gcvP(-) mutant was generated and shown to lack significant GCC activity using an indirect in vivo assay after incorporation of label from [2-(14)C]glycine into DNA. The gcvP(-) mutant grew poorly in the presence of excess glycine or minimal serine; these studies also established that L. major promastigotes require serine for optimal growth. Although gcvP(-) promastigotes and amastigotes showed normal virulence in macrophage infections in vitro, both forms of the parasite showed substantially delayed replication and lesion pathology in infections of both genetically susceptible or resistant mice. These data suggest that, as the physiology of the infection site changes during the course of infection, so do the metabolic constraints on parasite replication. This conclusion has great significance to the interpretation of metabolic requirements for virulence. Last, these studies call attention in trypanosomatid protozoa to the key metabolic intermediate 5,10-CH(2)-THF, situated at the junction of serine, glycine, and thymidylate metabolism. Notably, genome-based predictions suggest the related parasite Trypanosoma brucei is totally dependent on the GCC for 5,10-CH(2)-THF synthesis.  相似文献   

13.
Macrophages are the major target cell population of the obligate intracellular parasites LEISHMANIA: Although polymorphonuclear neutrophil granulocytes (PMN) are able to internalize Leishmania promastigotes, these cells have not been considered to date as host cells for the parasites, primarily due to their short life span. In vitro coincubation experiments were conducted to investigate whether Leishmania can modify the spontaneous apoptosis of human PMN. Coincubation of PMN with Leishmania major promastigotes resulted in a significant decrease in the ratio of apoptotic neutrophils as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low m.w. DNA fragments, and annexin V staining. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in PMN. The inhibition of PMN apoptosis depended on viable parasites because killed Leishmania or a lysate of the parasites did not have antiapoptotic effect. L. major did not block, but rather delayed the programmed cell death of neutrophils by approximately 24 h. The antiapoptotic effect of the parasites could not be transferred by the supernatants, despite secretion of IL-8 by PMN upon coculture with L. major. In vivo, intact parasites were found intracellularly in PMN collected from the skin of mice 3 days after s.c. infection. This finding strongly suggests that infection with Leishmania prolongs the survival time of neutrophils also in vivo. These data indicate that Leishmania induce an increased survival of neutrophil granulocytes both in vitro and in vivo.  相似文献   

14.
15.
Azithromycin is one of a new class of antibiotics known as azalides. Azithromycin has high tissue affinity and this feature is thought to be due to the presence of two basic tertiary amine groups. Leishmania major, one of the causative agents of cutaneous leishmaniosis, is an obligate intracellular parasite. In this in vitro study, the potential anti-leishmanial effect of azithromycin upon intracellular forms namely the amastigote of L. major in mice peritoneal macrophages was investigated. L. major promastigotes were propagated in RPMI-1640 supplemented with 20% fetal calf serum in the log phase. The percentage of phagocytosis and microbiacidal activity of azithromycin on macrophages was assessed in the control and study groups by fluorescence microscopy, using acridine orange. Our results showed that at all the concentrations used (0.05, 0.1, 0.3, 0.6 microg ml(-1)) azithromycin had no inhibitory effect on the phagocytic capacity of mouse peritoneal macrophages. Although no significant difference was observed for leishmaniacidal activity between the study and the control groups at a concentration of 0.05 microg ml(-1) (p>0.05), a significant (p<0.05) increase in leishmaniacidal activity was detected at 0.1, 0.3 and 0.6 microg ml(-1). As a result, azithromycin does not provide any contribution to the phagocytosis of L. major promastigotes in macrophages in vitro, but it increases the intracellular killing rates of amastigotes. These results suggest that it has a potential anti-leishmanial effect, and may provide a significant advantage in the treatment of the disease.  相似文献   

16.
Both native human IFN-beta or -gamma added to human monocytes in culture increased their leishmaniacidal effect on intracellular Leishmania tropica major (L. major) amastigotes. This effect was dose-dependent, and was apparent if the IFN was added either before or after infection of the monocyte cultures with the promastigote form of the parasite. Compared on the basis of antiviral activity, IFN-gamma was shown to have a leishmaniacidal effect approximately three times greater than IFN-beta. Recombinant IFN preparations showed similar effects. In addition, IFN-gamma increased H2O2 production from human monocytes in culture in a dose-dependent manner. Monoclonal antibody to IFN-gamma abrogated both its effect on the leishmaniacidal capacity and on H2O2 production by the monocytes. These results suggest that IFN-gamma may be of therapeutic value in cutaneous leishmaniasis.  相似文献   

17.
This study evaluates the cytotoxic and genotoxic potential of alloxydim sodium using micronucleus (MN) assay, in human peripheral lymphocytes. MN assay was used to investigate the genotoxic effects of alloxydim sodium in human peripheral lymphocytes treated with 250, 500, 750, 1,000 µg/ml concentrations of alloxydim sodium for 24 and 48 h. Solvent, negative and positive controls were also used in the experiments in parallel. The obtained results were evaluated in statistical analyses by using Dunnett-t test (two sided) and p < 0.05 was accepted as significant. Alloxydim sodium significantly increased the MN formation compared with the negative control, at both 750 and 1,000 µg/ml concentrations and treatment periods. We also evaluated the nuclear division index (NDI) for cytotoxicity of this pesticide in the experiment, and finally observed a significant decrease of the NDI values at all concentrations of alloxydim sodium and at both treatment periods.  相似文献   

18.
19.
ATP-binding cassette (ABC) transporters constitute one of the biggest and most conserved protein families in the evolutionary scale. Many of them are of enormous clinical relevance, due to their relationship with genetic diseases and drug resistance during the treatment of cancer and infectious diseases. Leishmaniasis is a major and globally widespread group of parasitic diseases, whose treatment has been complicated by the expansion of resistance to conventional drugs. Here, we review the current knowledge about ABC transporters in Leishmania spp, with special attention to their relationship with the drug-resistance phenotype.  相似文献   

20.
Numerous species of Meriones have been incriminated as natural reservoir hosts of Leishmania major in Mongolia, Soviet Asia, Afghanistan, the Middle East, and North Africa. However, little is known about the immunological response or course of infection in these small rodents. In this study, 40 commercially obtained inbred Meriones unguiculatus were divided into equal groups and injected in the right hind footpad with various doses of L. major promastigotes or with medium only. At regular intervals, blood was collected from the animals for subsequent evaluation of the kinetics of anti-L. major serum antibody production. Footpad lesions were measured periodically for 13 wk, beginning just before infection. The humoral response to infection and the course and severity of disease were dose related. However, metastasis lymph nodes, liver, spleen, and secondary cutaneous sites occurred at each of the doses tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号