首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently described a large, multiple-conductance Cl- channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxi-Cl- channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl- channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl- channels were reversibly activated in 69% of cell-attached patches when the temperature was above 32 degrees C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl- channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl- channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl- channel was independent of Ca2+ in inside-out patches. Single-channel currents were blocked by internal or external Zn2+ (100-200 microM), 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonate (SITS, 100-500 microM) and 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS, 100 microM). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.  相似文献   

2.
The patch-clamp technique was used to characterize channels that could contribute to the resting Cl-conductance in the surface membrane of cultured rat skeletal muscle. Two Cl- -selective channels, in addition to the Cl- -selective channel of large conductance described previously (Blatz and Magleby, 1983), were observed. One of these channels had fast kinetics and a conductance of 45 +/- 1.8 pS (SE) in symmetrical 100 mM KCl. The other had slow kinetics and a conductance of 61 +/- 2.4 pS. The channel with fast kinetics typically closed within 1 ms after opening and flickered between the open and shut states. The channel with slow kinetics typically closed within 10 ms after opening and displayed less flickering. Both channels were active in excised patches of membrane held at potentials similar to resting membrane potentials in intact cells, and both were open a greater percentage of time with depolarization. Under conditions of high ion concentrations, both channels exhibited nonideal selectivity for Cl- over K+ with the permeability ratio PK/PCl of 0.15-0.2. Additional experiments on the fast Cl- channel indicated that its activity decreased with lowered pHi and that SO2-4 and CH3SO-4 were ineffective charge carriers. These findings, plus the observation that the fast Cl- channel was also active in membrane patches on intact cells, suggest that the fast Cl- channel provides a molecular basis for at least some of the resting Cl- conductance. The extent to which the slow Cl- channel contributes is less clear as it was typically active only after excised patches of membrane had been exposed to high concentrations of KCl at the inner membrane surface.  相似文献   

3.
Abnormal regulation of ion channels in cystic fibrosis epithelia.   总被引:9,自引:0,他引:9  
M J Welsh 《FASEB journal》1990,4(10):2718-2725
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by defective electrolyte transport in several epithelia. In sweat duct, pancreatic, intestinal, and airway epithelia, abnormalities in transepithelial ion transport may account for the manifestations of the disease. A Cl- impermeable apical cell membrane is a common feature in these CF epithelia. The rate of transepithelial Cl- transport is controlled in part by hormonally regulated apical membrane Cl- channels; in CF epithelia, Cl- channels are present but their regulation is defective. Most regulation studies have focused on an outwardly rectifying Cl- channel, although other channels may be involved in Cl- secretion. Phosphorylation of Cl- channels or associated regulatory proteins by cAMP-dependent protein kinase or by protein kinase C (at a low internal [Ca2+]) in excised patches of membrane activates Cl- channels in normal cells but not in CF cells. Phosphorylation with protein kinase C at a high internal [Ca2+] in excised patches of membrane inactivates the channel; such inactivation is normal in CF cells. Cl- channels can also be activated by other maneuvers including an increase in the cytosolic [Ca2+], sustained membrane depolarization, an increase in temperature, proteolysis, and changes in osmolarity; the response to such maneuvers is not defective in CF. In addition to the Cl- channel abnormalities, Na+ absorption is increased in CF epithelia. It is not certain whether the increased rate of Na+ absorption results from an increase in the number of cation channels or an alteration of their kinetics. The relation of these ion channel abnormalities to the CF gene product is unknown, but an understanding of the function of the protein product and its defective function in CF should yield important new insights into the pathogenesis and potential therapy of this disease.  相似文献   

4.
M Sugita  Y Yue    J K Foskett 《The EMBO journal》1998,17(4):898-908
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR.  相似文献   

5.
The isolated epithelium of toad skin was disintegrated into single cells by treatment with collagenase and trypsine. Chloride channels of cell-attached and excised inside-out apical membrane-patches of mitochondria-rich cells were studied by the patch-clamp technique. The major population of Cl- channels constituted small 7-pS linear channels in symmetrical solutions (125 mM Cl-). In cell-attached and inside-out patches the single channel i/V-relationship could be described by electrodiffusion of Cl- with a Goldmann-Hodgkin-Katz permeability of, PCl = 1.2 x 10(-14) - 2.6 x 10(-14) cm3. s-1. The channel exhibited voltage-independent activity and could be activated by cAMP. This channel is a likely candidate for mediating the well known cAMP-induced transepithelial Cl- conductance of the amphibian skin epithelium. Another population of Cl- channels exhibited large, highly variable conductances (upper limit conductances, 150-550 pS) and could be activated by membrane depolarization. A group of intermediate-sized Cl(- )-channels included: (a) channels (mean conductance, 30 pS) with linear or slightly outwardly rectifying i/V-relationships and activity occurring in distinct "bursts," (b) channels (conductance-range, 10-27 pS) with marked depolarization-induced activity, and (c) channels with unresolvable kinetics. The variance of current fluctuations of such "noisy" patches exhibited a minimum close to the equilibrium-potential for Cl-. With channels occurring in only 38% of sealed patches and an even lower frequency of voltage-activated channels, the chloride conductance of the apical membrane of mitochondria-rich cells did not match quantitatively that previously estimated from macroscopic Ussing- chamber experiments. From a qualitative point of view, however, we have succeeded in demonstrating the existence of Cl-channels in the apical membrane with features comparable to macroscopic predictions, i.e., activation of channel gating by cAMP and, in a few patches, also by membrane depolarization.  相似文献   

6.
Cultured normal (N) cystic fibrosis (CF) keratinocytes were evaluated for their Cl(-)-transport properties by patch-clamp-, Ussing chamber- and isotopic efflux-measurements. Special attention was paid to a 32 pS outwardly rectifying Cl- channel which has been reported to be activated upon activation of cAMP-dependent pathways in N, but not in CF cells. This depolarization-induced Cl- channel was found with a similar incidence in N and CF apical keratinocyte membranes. However, activation of this channel in excised patches by protein kinase (PK)-A or PK-C was not successful in either N or CF keratinocytes. Forskolin was not able to activate Cl- channels in N and CF cell-attached patches. The Ca(2+)-ionophore A23187 activated in cell-attached patches a linear 17 pS Cl- channel in both N and CF cells. This channel inactivated upon excision. No relationship between the cell-attached 17 pS and the excised 32 pS channel could be demonstrated. Returning to the measurement of Cl- transport at the macroscopic level, we found that a drastic rise in intracellular cAMP induced by forskolin did in N as well as CF cells not result in a change in the short-circuit current (Isc) or the fractional efflux rates of 36Cl- and 125I-. In contrast, addition of A23187 resulted in an increase of the Isc and in the isotopic anion efflux rates in N and CF cells. We conclude that Cl(-)-transport in cultured human keratinocytes can be activated by Ca2+, but not by cAMP-dependent pathways.  相似文献   

7.
Ion channels in rabbit cultured fibroblasts   总被引:2,自引:0,他引:2  
Large outward currents are recorded with the whole-cell patch-clamp technique on depolarization of rabbit cultured fibroblasts. Our findings suggest that these outward currents consist of two voltage-dependent components, one of which also depends on cytoplasmic calcium concentration. Total replacement of external Cl- by the large anion ascorbate does not affect the amplitude of the currents, indicating that both components must be carried by K+. Consistent with these findings with whole-cell currents, in single channel recordings from fibroblasts we found that most patches contain high-conductance potassium-selective channels whose activation depends on both membrane potential and the calcium concentration at the cytoplasmic surface of the membrane. In a smaller number of patches, a second population of high-conductance calcium-independent potassium channels is observed having different voltage-dependence. The calcium- and voltage-dependence suggest that these two channels correspond with the two components of outward current seen in the whole-cell recordings. The single channel conductance of both channels in symmetrical KCl (150 mM) is 260-270 pS. Both channels are highly selective for K+ over both Na+ and Cl-. The conductance of the channels when outward current is carried by Rb+ is considerably smaller than when it is carried by K+. Some evidence is adduced to support the hypothesis that these potassium channel populations may be involved in the control of cell proliferation.  相似文献   

8.
Cystic fibrosis (CF) is caused by mutations that disrupt the surface localization and/or gating of the CF transmembrane conductance regulator (CFTR) chloride channel. The most common CF mutant is deltaF508-CFTR, which inefficiently traffics to the surfaces of most cells. The deltaF508 mutation may also disrupt the opening of CFTR channels once they reach the cell surface, but the extent of this gating defect is unclear. Here, we describe potent activators of wild-type and deltaF508-CFTR channels that are structurally related to 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), a negatively charged pore blocker that we show to have mixed agonistic activity (channel activation plus voltage-dependent pore block). These CFTR agonists include 1) an uncharged NPPB analog that stimulates channel opening at submicromolar concentrations without blocking the pore and 2) curcumin, a dietary compound recently reported to augment deltaF508-CFTR function in mice by an unknown mechanism. The uncharged NPPB analog enhanced the activities of wild-type and deltaF508-CFTR channels both in excised membrane patches and in intact epithelial monolayers. This compound increased the open probabilities of deltaF508-CFTR channels in excised membrane patches by 10-15-fold under conditions in which wild-type channels were already maximally active. Our results support the emerging view that CFTR channel activity is substantially reduced by the deltaF508 mutation and that effective CF therapies may require the use of channel openers to activate mutant CFTR channels at the cell surface.  相似文献   

9.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- >> SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10- fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

10.
Isolated cells from rat distal colon were investigated with the patch-clamp technique. In cell-attached and cell-excised patches (inside-out) single chloride channels with outward-rectifying properties were observed. In excised patches the single-channel conductance g was 47 +/- 5 pS at positive and 22 +/- 2 pS at negative clamp potentials (n = 6). The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 10 microM) induced fast closing events, whereas 10 microM of 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) had no effect when applied to the cytosolic side. Quinine in the bath inhibited the Cl- channel by reducing its single-channel amplitude and increased open channel noise. With 0.1 mM the current amplitude decreased by 54% and with 1 mM quinine by 67%. Ca2(+)-dependent nonselective cation channels where observed after excision of the membrane patch. This channel was completely and reversibly inhibited by 100 microM DCDPC. Application of 1 mM quinine to the bath induced flickering and reduced the open-state probability from 0.94 to 0.44. In summary, besides its well established effects on K+ channels, quinine also inhibits nonselective cation channels and chloride channels by inducing fast closing events.  相似文献   

11.
12.
Single-channel recordings from central neurons of the helix snail, Cepaea nemoralis, revealed two types of channels that could be activated by stretch (i.e., by the membrane deformation produced when suction is applied to the patch pipette). One, a K+ channel (58 pS in physiological solution), was evident in excised and cell-attached patches. Its conductance in symmetrical [K+] solutions indicated a channel of high K+ permeability (PK = 3.4 x 10(-13) cm/s). Though osmoregulation has been suggested as a function for such channels, comparisons among molluscs indicate osmotic milieu does not govern their expression; Cepaea is terrestrial, and stretch-activated K+ channels similar to those described here occur in aquatic and marine molluscs. The second type of channel, observed only in excised patches, was Cl- permeant; it had a large conductance (130 pS) and was inactive prior to patch excision. Membrane tension may not be the physiological activator of either the K+ or Cl- channel; the channels are designated as stretch-activated channels on the basis of their experimental behaviour during single-channel recording.  相似文献   

13.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

14.
We used single channel methods on A6 renal cells to study the regulation by methylation reactions of epithelial sodium channels. 3-Deazaadenosine (3-DZA), a methyltransferase blocker, produced a 5-fold decrease in sodium transport and a 6-fold decrease in apical sodium channel activity by decreasing channel open probability (P(o)). 3-Deazaadenosine also blocked the increase in channel open probability associated with addition of aldosterone. Sodium channel activity in excised "inside-out" patches usually decreased within 1-2 min; in the presence of S-adenosyl-l-methionine (AdoMet), activity persisted for 5-8 min. Sodium channel mean time open (t(open)) before and after patch excision was higher in the presence of AdoMet than in untreated excised patches but less than t(open) in cell-attached patches. Sodium channel activity in excised patches exposed to both AdoMet and GTP usually remained stable for more than 10 min, and P(o) and the number of active channels per patch were close to values in cell-attached patches from untreated cells. These findings suggest that a methylation reaction contributes to the activity of epithelial sodium channels in A6 cells and is directed to some regulatory element closely connected with the channel, whose activity also depends on the presence of intracellular GTP.  相似文献   

15.
Crosslinking of type I Fc epsilon receptors (Fc epsilon RI) on the surface of basophils or mast cells initiates a cascade of processes leading to the secretion of inflammatory mediators. We report here a correlation between mediator secretion and the activation of Cl- channels in rat mucosal-type mast cells (line RBL-2H3). Stimulation of RBL cells by either IgE and antigen or by a monoclonal antibody specific for the Fc epsilon RI, resulted in the activation of Cl- ion channels as detected by the patch-clamp technique. Channel activation occurred slowly, within minutes after stimulation. The channel has a slope conductance of 32 pS at potentials between 0 and -100 mV, and an increasing open-state probability with increasing depolarization. Activation of apparently the same Cl- channels could be mimicked without stimulation by isolating inside-out membrane patches in tyrode solution. Parallel inhibition of both Cl- channel activity and mediator secretion, as monitored by serotonin release, was observed by two compounds, the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and the anti-allergic drug cromolyn. NPPB inhibited both the antigen-induced Cl- current and the serotonin release, where half-maximal inhibition occurred at similar doses, at 52 microM and 77 microM, respectively. The drug cromolyn, recently found to inhibit immunologically induced mediator secretion from RBL cells upon intracellular application, also blocks Cl- channels (IC50 = 15 microM) when applied to the cytoplasmic side of an inside-out membrane patch. The observed Cl- channel activation upon immunological stimulation and the parallel inhibition of channel current and of serotonin release suggests a functional role for this Cl- channel in mediator secretion from the mast cells studied.  相似文献   

16.
The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl- cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl- transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl- channels on microdissected mouse DCTs using the patch-clamp technique. A channel of approximately 9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NPo in cell-attached patches was not modified when tubules were preincubated in the presence of 10-5 M forskolin, but the channel was inhibited by phorbol ester (10-6 M). In addition, NPo was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NPo increased threefold), or pH increased from 6.4 to 8.0 (NPo increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl- relative permeability was 0.09, and the anion selectivity sequence Cl(-)--I(-) > Br(-)--NO3(-) > F(-). Intracellular NPPB (10-4 M) and DPC (10-3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl- channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family.  相似文献   

17.
Recently, we described a novel 3-pS Ca(2+)-conducting channel that is activated by BAPTA and thapsigargin-induced passive depletion of intracellular Ca(2+) stores and likely to be a native store-operated channel in vascular smooth muscle cells (SMC). Neither Ca(2+) nor inositol 1,4,5-trisphosphate or other second messengers tested activated this channel in membrane patches excised from resting SMC. Here we report that these 3-pS channels are activated in inside-out membrane patches from SMC immediately upon application of Ca(2+) influx factor (CIF) extracted from mutant yeast, which has been previously shown to activate Ca(2+) influx in Xenopus oocytes and Ca(2+) release-activated Ca(2+) current in Jurkat cells. In bioassay experiments depletion of Ca(2+) stores in permeabilized human platelets resulted in the release of endogenous factor, which activated 3-pS channels in isolated inside-out membrane patches excised from SMC and exposed to permeabilized platelets. The same 3-pS channels in excised membrane patches were also activated by acid extracts of CIF derived from human platelets with depleted Ca(2+) stores, which also stimulated Ca(2+) influx upon injection into Xenopus oocytes. Specific high pressure liquid chromatography fractions of platelet extracts were found to have CIF activity when injected into oocytes and activate 3-pS channels in excised membrane patches. These data show for the first time that CIF produced by mammalian cells and yeast with depleted Ca(2+) stores directly activates native 3-pS cation channels, which in intact SMC are activated by Ca(2+) store depletion.  相似文献   

18.
CaCo-2 is a human colonic carcinoma cell line which becomes differentiated in culture to form a polarized epithelium exhibiting several of the functional characteristics of native colonic tissue. In the present study, CaCo-2 cells have been used for a patch-clamp study of colonic ion conductance pathways. A large, 120 pS K(+)-selective channel was found in cells forming subconfluent monolayers in culture. Unlike Maxi-K+ channels found in other epithelial cells, this channel was not activated with elevations in cytosolic Ca2+. Channel activity was stimulated with membrane depolarization and most markedly with membrane stretch. The application of negative pressure (20 mm-Hg) to both cell-attached and excised, inside-out membrane patches caused a burst of channel activity which disappeared within seconds of suction removal. Single-channel conductance of the pressure-activated channel was decreased when quinine (100 microM) was present in the patch pipette.  相似文献   

19.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

20.
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号