首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms and myocardial alterations associated with NO-deficient hypertension are still far from clear. The aim of the present study was to focus on the enzyme histochemical and subcellular changes in the heart of L-NAME treated rats, as well as to examine the influence of captopril treatment. Wistar rats were administered either L-NAME (40 mg/kg/day) alone or together with captopril (100 mg/kg/day) for a period of 4 weeks. A significant increase of blood pressure confirmed the reliability of the model. The results showed that long-lasting L-NAME administration was accompanied by a decrease of endothelial NO-synthase activity and by a significant local decrease of the following enzyme activities: capillary-related alkaline phosphatase, 5'-nucleotidase and ATPase (but not dipeptidyl peptidase IV) and cardiomyocyte-related glycogen phosphorylase, succinic dehydrogenase, beta-hydroxybutyrate dehydrogenase and ATPases. No activity of these enzymes was found in the scar, whereas a marked increase of alkaline phosphatase and dipeptidyl peptidase IV activities was found in the foci of fibrotization. Histochemical changes correlated with subcellular changes, which were characterized by 1) apparent fibroblast activation associated with interstitial/perivascular fibrosis, 2) heterogeneous population of the normal, hypertrophic and injured cardiomyocytes, 3) enhancement of the atrial granules and their translocation into the sarcolemma, and 4) impairment of capillaries as well as by induction of angiogenesis. Similar alterations were also found in the heart of captopril co-treated rats, despite of the significant suppression of blood pressure. The results indicate that NO-deficient hypertension is accompanied by metabolic disturbances and ultrastructural alterations of the heart and these changes are probably not induced by the renin-angiotension system only.  相似文献   

2.
The effect of hypertension on the progression of diabetic cardiomyopathy was examined by attempting to induce a similar level of diabetes in both spontaneously hypertensive rats (SHR) and Wistar rats. Streptozotocin (STZ) was injected into SHR (45 mg/kg) and Wistar rats (55 mg/kg) before (eight weeks of age) and after (twelve weeks of age) the development of hypertension in the SHR. For both groups of animals, induction of diabetes resulted in depressed weight gain, increased food and fluid consumption, hypoinsulinemia, hyperglycemia, and hypertriglyceridemia. For the rats injected at eight weeks of age, an oral glucose tolerance test (OGTT) demonstrated that although the SHR were significantly less diabetic than Wistar rats, the degree of cardiac dysfunction was equivalent in both strains. These results suggest that hypertension was interacting with the diabetic condition to impair cardiac performance. Injecting SHR at twelve weeks of age increased the severity of diabetes but interestingly did not depress heart function compared with the non-diabetic SHR group. Injecting Wistar rats at this age also increased the severity of diabetes, but unlike the SHR diabetic animals, these rats still had impaired cardiac performance. These results suggest that hypertension exacerbates the cardiac dysfunction seen during diabetes, especially when SHR rats are injected with STZ prior to the elevation of blood pressure. Moreover, in the SHR, the development of LV hypertrophy at the time of STZ injection may have compensated for the damaging effects of diabetes on the myocardium, thereby enabling the heart to perform normally.  相似文献   

3.
Induction of angiogenesis in NO-deficient rat heart   总被引:6,自引:0,他引:6  
Angiogenesis is known to be triggered by various stimuli including hypertension. It was previously found that NO-deficient hypertension is accompanied by structural remodeling of the cardiac muscle and large coronary arteries. This study was aimed to examine the qualitative subcellular alterations of capillaries in the heart of the rats treated with L-NAME (40 mg/kg/day for 4 weeks). The results showed that long-lasting inhibition of NO production induced an apparent activation of fibroblast function. This was associated with enhancement of fibrotization as well as with the induction of angiogenesis. Accordingly, fibroblasts were frequently located in the vicinity of capillary pericytes, which was followed by their detachment and migration. Moreover, besides inactive or even injured capillaries, the other ones exhibited extensive proteosynthetic activity linked to capillary growth, proliferation and migration of endothelial cells. The results strongly indicate enhanced triggering of the angiogenesis in L-NAME-induced NO-deficient hypertension.  相似文献   

4.
The influences of hypertension and hypothyroidism on diabetic cardiomyopathy are not clear. We studied this problem further by characterizing the effects of chronic triiodothyronine (T3) treatment on cardiac performance of diabetic renovascular hypertensive (RVH) rats. Hypertension was effected by clipping the left renal artery of Wistar-Kyoto (WKY) rats, and diabetes was induced 2 weeks later by streptozotocin (STZ; 55 mg/kg i.v.). The WKY strain was selected because it is relatively resistant to the cardiodepressant effects of diabetes, so that the influence of superimposed hypertension would be more apparent. Performance of working Krebs-Henseleit buffer perfused hearts was quantified by measuring left ventricular pressure and flow characteristics. The results showed that renovascular clipping caused a marked hypertension and left ventricular hypertrophy (LVH) but had no effect on perfused heart performance after 10 weeks. They also showed that diabetes during the final 8 weeks (i) caused a marked impairment in the performance of perfused hearts ex vivo of hypertensive rats but had no measurable effect in the normotensive WKY, (ii) had no effect on arterial pressure of either the normotensive or the hypertensive rats but reduced heart rate of hypertensive animals in vivo, and (iii) caused equivalent hyperglycemia, hypoinsulinemia, and hypothyroidism (depressed serum T3 and T4 levels) of hypertensive and normotensive rats. Treatment of diabetic RVH rats with T3 (10 micrograms.kg-1.day-1) in vivo was nearly as effective as insulin therapy (10 U.kg-1.day-1) in preventing the cardiac dysfunction ex vivo and was as effective as insulin therapy in preventing the bradycardia in vivo and the decline loss.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of diabetes was determined on nitric oxide synthase (NOS) activity in rat heart and liver. The diabetes was induced by streptozotocin (STZ) and NOS activity was determined after 1 or 12 weeks post-STZ injection. In both tissues, the majority of NOS activity was associated with endothelial constitutive calcium-sensitive NOS (ecNOS) isoform and found in the particulate (100,000xg pellet) fraction in young rats. The diabetes as well as age reduced this activity significantly in heart, whereas only the age caused a decrease in ecNOS activity in liver tissue. Lipopolysaccharides (LPS) induced calcium-insensitive iNOS activity in both young and old rats. The induction was significantly higher (up to 10-fold) in liver as compared to heart. Although the maximum induction of iNOS in young rats was almost similar in diabetic tissues as compared to control animals, there was a lag period for induction of iNOS in diabetic tissues. In old diabetic rats, the induction by LPS was almost completely abolished. These results suggest that diabetes causes either no change or a decrease in ecNOS activity and impairment in the induction of iNOS by LPS in rat heart and liver.  相似文献   

6.
Decreased availability of arginine and impaired production of NO (nitric oxide) have been implicated in the development of endothelial dysfunction. Citrulline formed by the NOS reaction is recycled to arginine by the citrulline-NO cycle, which is composed of NOS, argininosuccinate synthetase (AS), and argininosuccinate lyase. Therefore, we investigated the alterations of these enzymes in the aorta of streptozotocin (STZ)-induced diabetic rats. eNOS and AS mRNAs were increased by three- to fourfold 1-2 weeks after STZ treatment and decreased at 4 weeks. AL mRNA was weakly induced. Induction of eNOS and AS proteins was also observed. Cationic amino acid transporter (CAT)-1 mRNA remained little changed, and CAT-2 mRNA was not detected. The plasma nitrogen oxide levels were increased 1-2 weeks after STZ treatment and decreased at 4 weeks. Transforming growth factor-beta1 (TGF-beta1) mRNA in the aorta was also induced. TGF-beta1 induced eNOS and AS mRNAs in human umbilical vein endothelial cells but inhibited the proliferation of HUVEC. These results indicate that eNOS and AS are coinduced in the aorta in early stages of STZ-induced diabetic rats and that the induction is mediated by TGF-beta1. The results also suggest that TGF-beta1 works antiatherogenically at early stages of diabetes by increasing NO production, whereas prolonged elevation of TGF-beta1 functions atherogenically by inhibiting endothelial cell growth.  相似文献   

7.
目的:探讨建立高血压合并糖尿病(DiabetesMellitus,DM)大鼠模型的方法,并观察模型的稳定性。方法:采用链脲佐菌素(Streptozotocin,STZ)腹腔注射的方法造模。8周龄的SHR大鼠(spontaneouslyhypertensiverats)16只,随机等分成对照组和造模组。另选8只8周龄WKY大鼠作为正常血压对照组。给予造模组SHR按55mg/kg体重的剂量腹腔注射STZ,诱导建立糖尿病高血压大鼠动物模型。结果:小剂量STZ(55mg/kg)腹腔注射SHR制备的糖尿病高血压大鼠模型,造模成本低,成模率高,模型稳定。结论:造模组能成功诱导建立糖尿病高血压大鼠模型。  相似文献   

8.
This study has been designed to investigate the role of phosphatidyl-inositol 3-kinase-γ (PI3Kγ) in deoxycorticosterone acetate salt (DOCA) hypertension induced vascular endothelium dysfunction. Wistar rats were uninephrectomised and DOCA (40 mg·(kg body mass)(-1), subcutaneous injection) was administered twice weekly for 6 weeks to produce hypertension. Rats with mean arterial blood pressure ≥ 140 mm Hg (1 mm Hg = 133.322 Pa) were selected as hypertensive. Vascular endothelium dysfunction was assessed in terms of attenuation of acetylcholine-induced endothelium-dependent relaxation (isolated aortic ring preparation), decrease in serum nitrate and (or) nitrite level, as well as reduced level of glutathione and disruption of integrity of vascular endothelium (histopathology). Five weeks of DOCA administration were followed by 7 days of daily administration of PI3Kγ inhibitor (5-[[5-(4-fluorophenyl)-2-furanyl]methylene]-2,4-thiazolidinedione (CAY10505), 0.6 mg·kg(-1), per os (p.o.)), atorvastatin (30 mg·kg(-1), p.o.), and losartan (25 mg·kg(-1), p.o.) (positive control of hypertension), which significantly improved acetylcholine-induced endothelium dependent relaxation, serum nitrate and (or) nitrite level, glutathione level, and the vascular endothelial lining in hypertensive rats.Therefore, it may be concluded that CAY10505, a specific inhibitor of PI3Kγ, improves hypertension-associated vascular endothelial dysfunction. Thus, inhibition of PI3Kγ might be a useful approach in the therapeutics of vascular endothelium dysfunction.  相似文献   

9.
Erectile dysfunction is a serious and common complication of diabetes mellitus. The proposed mechanisms for erectile dysfunction in diabetes include central and autonomic neuropathy, endothelial dysfunction, and smooth muscle dysfunction. The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in centrally mediated penile erection. This study was designed to examine the role of nitric oxide (NO) within the central nervous system component of the behavioral responses including erection in diabetic rats. N-methyl-D-aspartic acid (NMDA)-induced erection, yawning, and stretch through the PVN can be blocked by prior administration of NO synthase (NOS) blocker, L-NMMA, in freely moving, conscious male normal rats. Four weeks after streptozotocin (STZ) and vehicle injections, NMDA-induced erection, yawning, and stretch responses through the PVN are significantly blunted in diabetic rats compared with control rats. Examination of neuronal NOS (nNOS) protein by Western blot analysis indicated a reduced amount of nNOS protein in the PVN of rats with diabetes compared with control rats. Furthermore, restoring nNOS within the PVN by gene transfer using adenoviral transfection significantly restored the erectile and yawning responses to NMDA in diabetic rats. These data demonstrate that a blunted NO mechanism within the PVN may contribute to NMDA-induced erectile dysfunction observed in diabetes mellitus.  相似文献   

10.
Portal hypertension is a major complication of human cirrhosis that frequently leads to central nervous system dysfunction. In our study, rats with prehepatic portal hypertension developed hippocampal mitochondrial dysfunction as indicated by decreased respiratory rates, respiratory control and mitochondrial nitric oxide synthase (mtNOS) activity in mitochondria isolated from the whole hippocampus. Succinate-dependent respiratory rates decreased by 29% in controlled state 4 and by 42% in active state 3, and respiratory control diminished by 20%. Portal hypertensive rats showed a decreased mtNOS activity of 46%. Hippocampal mitochondrial dysfunction was associated with ultrastructural damage in the mitochondria of hippocampal astrocytes and endothelial cells. Swollen mitochondria, loss of cristae and rupture of outer and inner membrane was observed in astrocytes and endothelial cells of the blood-brain barrier in parallel with the ammonia gradient. It is concluded that the moderate increase in plasma ammonia that followed portal hypertension was the potential primary cause of the observed alterations.  相似文献   

11.
The present study was designed to examine the development of hypertension in diabetic rats treated with streptozotocin (STZ, 1mg/g bw). The rats were studied at 3, 6, 9, 12 and 15 weeks. From the third week the rats were divided in diabetic rats according their glycemias and controls, along 15 weeks. After the third week a group, of rats showed increased urinary protein excretion (93, 134, 155 and 191%) compared to controls. In this group of rats the urinary kallikrein excretion was lower than control and the systolic blood pressure became significantly elevated between 3 and 6 weeks and persisted up to 15 weeks. On the other hand a group of diabetic rats were normotensive with urinary protein excretion similar to controls and urinary kallikrein lower compared to control but significantly higher compared diabetic hypertensive rats. These data suggest that the association of progressive diabetic nephropathy with abnormal endothelium-dependent vasodilation may produce a high prevalence of hypertensive diabetes.  相似文献   

12.
13.
ABSTRACT: BACKGROUND: Recent studies revealed that erythropoietin (EPO) has tissue-protective effects in the heart by increasing vascular endothelial growth factor (VEGF) expression and attenuating myocardial fibrosis in ischemia models. In this study, we investigated the effect of EPO on ventricular remodeling and blood vessel growth in diabetic rats. METHODS: Male SD rats were randomly divided into 3 groups: control rats, streptozotocin (STZ)-induced diabetic rats, and diabetic rats treated with 1000 U/kg EPO by subcutaneous injection once per week. Twelve weeks later, echocardiography was conducted, and blood samples were collected for counting of peripheral blood endothelial progenitor cells (EPCs). Myocardial tissues were collected, quantitative real-time PCR (RT-PCR) was used to detect the mRNA expression of VEGF and EPO-receptor (EPOR), and Western blotting was used to detect the protein expression of VEGF and EPOR. VEGF, EPOR, transforming growth factor beta (TGF-beta), and CD31 levels in the myocardium were determined by immunohistochemistry. To detect cardiac hypertrophy, immunohistochemistry of collagen type , collagen type , and Picrosirius Red staining were performed, and cardiomyocyte cross-sectional area was measured. RESULTS: After 12 weeks STZ injection, blood glucose increased significantly and remained consistently elevated. EPO treatment significantly improved cardiac contractility and reduced diastolic dysfunction. Rats receiving the EPO injection showed a significant increase in circulating EPCs (27.85+/-3.43%, P < 0.01) compared with diabetic untreated animals. EPO injection significantly increased capillary density as well as EPOR and VEGF expression in left ventricular myocardial tissue from diabetic rats. Moreover, EPO inhibited interstitial collagen deposition and reduced TGF-beta expression. CONCLUSIONS: Treatment with EPO protects cardiac tissue in diabetic animals by increasing VEGF and EPOR expression levels, leading to improved revascularization and the inhibition of cardiac fibrosis. Key words: erythropoietin; vascular endothelial growth factor; diabetes mellitus; endothelial progenitor cell; myocardial interstitial fibrosis; transforming growth factor beta.  相似文献   

14.
Nitric oxide (NO) is a potent regulator in the cardiovascular system; it is generated by the nitric oxide synthase (NOS) family of proteins. NO produced in endothelial cells plays a crucial role in vascular functions. The aim of this study was to clarify the effect of diabetes on aortic NO synthesis in a model of genetic hypertension and determine whether captopril modulates this effect. Diabetes was induced in ten weeks old spontaneously hypertensive rats (SHR) by streptozotocin injection. The rats were allocated into 3 groups: control group 1, non-diabetic SHR; group 2, diabetic SHR; group 3, diabetic SHR group receiving captopril at 80 mg/kg in drinking water for 4 weeks. Mean blood pressure (MBP) was measured once a week by tail-cuff method. Aortic NO metabolities (nitrite/nitrate) and endothelial NOS (NOS-3) were assayed by Griess reaction and by immunoblotting and immunohistochemistry, respectively. There was a significant decrease in nitrite/nitrate (NOx) in aortas of diabetic SHR compared with controls. The decrease of aortic NOx in diabetic SHR was accompanied by a decrease in NOS-3 expression. Captopril treatment reduced MBP without affecting either NOx level or NOS-3 expression in aortas of diabetic SHR. We conclude that STZ-induced diabetes decreased NO in aortas of SHR that may reflect endothelial cell dysfunction; captopril administration decreased MBP without affecting NO level in aortas of diabetic SHR which suggest that the blood pressure-lowering effects of captopril were independent of NO.  相似文献   

15.
The present study was designed to examine therapeutic efficacy of the root extract of Stephania Tetrandra S. Moore (STMS) (traditional Chinese medicine; Han Fang Ji) for treatment of neovascularization of the retinal capillary (retinopathy) in streptozotocin (STZ)-induced diabetic rats (STZ diabetic rats) in culture. Recently we have established the culture system in which fetal bovine serum (FBS) in Dulbecco modified Eagle medium (DMEM) induced neovascularization of the retinal capillary and choroidal capillary in normal rats in culture. STZ diabetic rats showed more neovascularization of the retinal capillary and choroidal capillary than did normal rats in culture. In this study, the retinal tissue was removed for the posterior ocular region and cultured in DMEM containing FBS. The choroidal tissue of the posterior ocular region was also removed and cultured as an internal reference. Administration of STSM (0.91, 9.1 and 91 microg/ml) significantly suppressed neovascularization of the retinal capillary in both STZ diabetic rats and normal rats in a dose-dependent manner. Similar results were obtained with the choroidal capillary; administration of STSM suppressed neovascularization of the choroidal capillary in both STZ diabetic rats and normal rats. In order to determine the component of STSM inhibiting neovascularization of the retinal capillary, tetrandrine (a major chemical constituent of STSM) was administered and neovascularization of the retinal capillary was examined in culture. The effect of tetrandrine on the choroidal capillary was also examined as an internal reference. Administration of tetrandrine (0.1, 1.0 and 10 microM) suppressed neovascularization of the retinal capillary in both STZ diabetic rats and normal rats in a dose-dependent manner. Similar results were obtained with the choroidal capillary of both STZ diabetic rats and normal rats. We infer, therefore, that STSM has a direct effect on the retinal capillary of posterior ocular region and suppresses neovascularization of retinal capillary in STZ diabetic rats through the activation of tetrandrine. These results suggest that STSM may prevent for delay the progression of retinopathy in diabetic patients.  相似文献   

16.
Genetic predisposition and social stress may represent important risk factors in etiology of hypertension associated with endothelial dysfunction. Perturbations of endothelial structural integrity are also critical for the pathogenesis of vascular diseases. We examined effect of chronic social stress on structure of aortic endothelium in borderline hypertensive (BHR) and normotensive Wistar rats. Male BHR - offspring of Wistar mothers and SHR fathers and age-matched W were exposed to 6-week crowding stress (5 rats/cage, 200 cm2/rat). Aortic tissue was processed for electron microscopy and NO synthase activity measurement. Crowding stress significantly increased blood pressure in BHR compared to basal values (140+/-3 mm Hg vs. 130+/-3 mm Hg, p<0.05) and reduced enzyme activity by 37 % (p<0.01) in the aorta of BHR. Local slight structural alterations of endothelium were found in non-stressed BHR (p<0.001) when compared with Wistar rats. Chronic stress caused marked (p<0.005) subcellular injury of endothelial cells in aorta of BHR characterized by mitochondrial damage, presence of vacuoles, increased number of lysosomes, Weibel-Palade bodies, changes of intercellular connections and local disruption of endothelium, while only slight changes were seen in Wistar rats. Results suggest increased sensitivity of aortic endothelium of BHR to chronic crowding that may contribute to acceleration of arterial dysfunction.  相似文献   

17.
Xu J  Wang S  Zhang M  Wang Q  Asfa S  Zou MH 《PloS one》2012,7(1):e29649
Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO(-)) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets-fed LDL receptor knockout (LDLr(-/-)) mice. The elevated 26S proteasome activities were accompanied by ONOO(-)-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO(-)-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.  相似文献   

18.
This review summarizes our findings concerning the altered balance of vasoactive systems (namely sympathetic nervous system and nitric oxide) in various forms of experimental hypertension--genetic hypertension (SHR, HTG rats), salt hypertension (Dahl rats) and NO-deficient hypertension (L-NAME-treated rats). An attempt is made to define relative NO deficiency (compared to the existing level of sympathetic vasoconstriction), to describe its possible causes and to evaluate particular indicators of its extent. A special attention is paid to reactive oxygen species, their interaction with NO metabolism, cell Ca2+ handling and blood pressure regulation. Our current effort is focused on the investigation of abnormal regulation of cytosolic Ca2+ levels in smooth muscle and endothelium of hypertensive animals. Such a research should clarify the mechanisms by which genetic and/or environmental factors could chronically modify blood pressure level.  相似文献   

19.
Congestive heart failure (CHF) is associated with impaired endothelium-dependent nitric oxide (NO)-mediated vasodilation (endothelial dysfunction). We hypothesized that coronary endothelial dysfunction in CHF may be due in part to decreased dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades endogenous inhibitors of NO synthase (NOS), including asymmetric dimethylarginine. Coronary blood flow and the endothelium-dependent vasodilator response to acetylcholine were studied in dogs in which CHF was produced by rapid ventricular pacing for 4 wk. Coronary flow and myocardial O2 consumption at rest and during treadmill exercise were decreased after development of CHF, and the vasodilator response to intracoronary acetylcholine (75 microg/min) was decreased by 39 +/- 5%. DDAH activity and DDAH isoform 2 (DDAH-2) protein content were decreased by 53 +/- 13% and 58 +/- 14%, respectively, in hearts with CHF, whereas endothelial NOS and DDAH isoform 1 (DDAH-1) were increased. Caveolin-1 and protein arginine N-methyltransferase 1, the enzyme that produces asymmetric dimethylarginine, were unchanged. Immunohistochemical staining showed DDAH-1 strongly expressed in coronary endothelium and smooth muscle and in the sarcolemma of cardiac myocytes. In cultured human endothelial cells, DDAH-1 was uniformly distributed in the cytosol and nucleus, whereas DDAH-2 was found only in the cytosol. Decreased DDAH activity and DDAH-2 protein expression may cause accumulation of endogenous inhibitors of endothelial NOS, thereby contributing to endothelial dysfunction in the failing heart.  相似文献   

20.
Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×107 cells/mL; 30 min) isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2), while CD61 (platelet marker) and CD62P (activated platelet marker) were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway) and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号