首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hybridization of cytoplasmic ribosomal RNA (rRNA) to restriction endonuclease digests of nuclear DNA of Chlamydomonas reinhardii reveals two BamHI ribosomal fragments of 2.95 and 2.35×106 d and two SalI ribosomal fragments of 3.8 and 1.5×106 d. The ribosomal DNA (rDNA) units, 5.3×106 d in size, appear to be homogeneous since no hybridization of rDNA to other nuclear DNA fragments can be detected. The two BamHI and SalI ribosomal fragments have been cloned and a restriction map of the ribosomal unit has been established. The location of the 25S, 18S and 5.8S rRNA genes has been determined by hibridizing the rRNAs to digests of the ribosomal fragments and by observing RNA/DNA duplexes in the electron microscope. The data also indicate that the rDNA units are arranged in tandem arrays. The 5S rRNA genes are not closely located to the 25S and 18S rRNA genes since they are not contained within the nuclear rDNA unit. In addition no sequence homology is detectable between the nuclear and chloroplast rDNA units of C. reinhardii.Abbreviations used rRNA ribosomal RNA - rDNA ribosomal DNA d, dalton  相似文献   

2.
3.
4.
The DNA sequences of the spacers between the 5S ribosomal RNA genes were determined for the cereals maize, barley, soghum, rye, rice, oat, and wheat. Species-specific primers were designed from the spacer region. PCR with these primers and a common primer from the conserved 5S ribosomal RNA gene sequence was investigated as a method for detection of the seven cereal species. DNA from these species could be specifically detected in mixtures. This technique could find application in the determination of the composition of admixtures or processed cereal products. The protocol described has potential for general application in the identification of plant species.  相似文献   

5.
The 5S ribosomal RNA (rRNA) genes in eukaryotes may occur either interspersed with the other rRNA genes in the ribosomal DNA (rDNA) repeat, or in separate tandem arrays, or dispersed throughout the genome. In Pythium species and in several related Oomycetes, polymerase chain reaction (PCR) amplification of the nontranscribed spacer (NTS) region with one primer specific for the 5S gene revealed, with several exceptions, that the 5S rRNA gene was present in the rDNA repeat of those species with filamentous sporangia and was absent from the rDNA repeat of those with globose or unknown sporangia. When present, the gene was located approximately 1 kb downstream of the large-subunit rRNA gene and on the strand opposite that on which the other rRNA genes were located. This was confirmed in P. torulosum by sequencing of the gene and its flanking regions. The 5S rRNA genes of P. ultimum were found in tandem arrays outside the rDNA repeat. Evidence of dispersed 5S rRNA sequences was also observed. For many of the species of Pythium having the 5S gene in the NTS, the region between the large-subunit rRNA gene and the 5S gene was found to have length heterogeneity. Oomycetes related to Pythium were also found to have the 5S gene in the NTS, although sometimes in the opposite orientation. This may mean that the presence of the gene in the NTS is ancestral for the Oomycetes and that the absence of the gene in the NTS in those Pythiums with globose sporangia is due to loss of the gene from the rDNA repeat in an ancestor of this group of species. These results favor the view that 5S rRNA gene linkage to the rRNA cistron existed prior to the unlinked arrangement seen in most plants and animals.  相似文献   

6.
7.
Organization of the mitochondrial ribosomal RNA genes of maize.   总被引:9,自引:5,他引:4       下载免费PDF全文
The organisation of the mitochondrial ribosomal RNA genes in maize is described. Each of the rRNAs is encoded by a single gene. The 5S and 18S rRNA genes are close together, and separated from the 26S rRNA gene by 16 kb of DNA. There is no evidence of heterogeneity in this gene arrangement.  相似文献   

8.
Organization of ribosomal genes in Paramecium tetraurelia   总被引:1,自引:0,他引:1       下载免费PDF全文
The macronuclear ribosomal DNA (rDNA) of the ciliated protozoan Paramecium tetraurelia (stock 51) was analyzed by digestion with restriction endonucleases. The fragments which contained ribosomal RNA (rRNA) coding sequences and spacer sequences were identified. The spacer sequences exhibited some heterogeneity in size. The genes coding for 5.8S RNA, but not for 5S RNA, are linked to the 17S and 25S rRNA genes. Complementary RNA, synthesized from rDNA of stock 51, was hybridized with restriction digests of whole cell DNA from six other allopatric stocks of this species. The restriction patterns of the rDNA from these seven stocks were, in general, very similar, and the sizes of the coding sequences were identical in all seven stocks. Only the restriction pattern of rDNA from stock 127 differed significantly from that of stock 51. The rDNA from stock 127 was isolated and characterized, and with the exception of the restriction pattern of its spacer, it resembled the rDNA from stock 51. It is concluded that the rDNA repeat in Paramecium, including the spacer, has, in general, been conserved during the course of evolution. It is suggested that in some species, even in the absence of genetic exchange among geographically separated populations, selection pressure may act to conserve spacers of tandemly repeated rDNA. The conservation may be related to the number of rDNA copies in the germinal nucleus.  相似文献   

9.
10.
Mapping of the ribosomal RNA genes on spinach chloroplast DNA.   总被引:22,自引:12,他引:10       下载免费PDF全文
Spinach chloroplast ribosomal RNAs have been hybridized to restriction endonuclease fragments of spinach chloroplast DNA. All three RNA species (23S, 16S and 5S) hybridized to a single large fragment when the DNA was digested with either Sall or Pstl. Hybridization of 23S RNA to fragments produced by Smal yielded two radioactive bands which corresponded to the bi-molar 2.5 X 10(6) and 1.15 X 10(6) Mr fragments. 16S RNA also hybridized to two, bi-molar Smal fragments (3.4 X 10(6) and 2.5 X 10(6) Mr) and 5S RNA hybridized to the 1.15 X 10(6) Mr bi-molar Smal fragment. The 23S RNA and 16S RNA cistrons were each also shown to contain a single EcoRI site. From the data it was possible to conclude that the ribosomal RNA genes are located on the inverted repeat region of the spinach chloroplast DNA restriction map [1,2], that the sequence of the cistrons is 16S - 23S - 5S and that the size of the spacer between the 16S and 23S RNA cistrons is approximately 0.90 X 10(6) Mr.  相似文献   

11.
We report on copy numbers of 18S ribosomal RNA genes in three species of copepods (Crustacea: Copepoda), two of which possess an unusual arrangement in which 5S genes are included within the 18S-5.8S-28S repeat unit. Slot blots of genomic and standard DNA were hybridized with an 18S rRNA gene probe constructed from one of the marine species and hybridization was quantified using chemiluminescence. Diploid 18S rRNA gene copy numbers are estimated as ca. 15 300 and 33 500 in the marine species Calanus finmarchicus (13.0 pg DNA in 2C adult nuclei) and C. glacialis (24.2 pg DNA), respectively, and ca. 840 and 730 in two freshwater populations of Mesocyclops edax (both ca. 3 pg DNA) from Virginia and Nova Scotia, respectively. The roughly proportional relationship between 2C somatic nuclear DNA contents and rRNA gene copy number in the sibling species C. finmarchicus and C. glacialis may reflect polytenic replication of entire genomes during abrupt speciation events. Copy numbers may also reflect differential losses during embryonic chromatin diminution.  相似文献   

12.
1. We have constructed a physical map of the mtDNA of Tetrahymena pyriformis strain ST using the restriction endonucleases EcoRI, PstI, SacI, HindIII and HhaI. 2. Hybridization of mitochondrial 21 S and 14 S ribosomal RNA to restriction fragments of strain ST mtDNA shows that this DNA contains two 21-S and only one 14-S ribosomal RNA genes. By S1 nuclease treatment of briefly renatured single-stranded DNA the terminal duplication-inversion previously detected in this DNA (Arnberg et al. (1975) Biochim. Biophys. Acta 383, 359--369) has been isolated and shown to contain both 21-S ribosomal RNA genes. 14 S ribosomal RNA hybridizes to a region in the central part of the DNA, about 8000 nucleotides or 20% of the total DNA length apart from the nearest 21 S ribosomal RNA gene. 3. We have confirmed this position of the three ribosomal RNA genes by electron microscopical analysis of DNA . RNA hybrid molecules and R-loop molecules. 4. Hybridization of 21 S ribosomal RNA with duplex mtDNA digested either with phage lambda-induced exonuclease or exonuclease III of Escherichia coli, shows that the 21-S ribosomal RNA genes are located on the 5'-ends of each DNA strand. Electron microscopy of denaturated mtDNA hybridized with a mixture of 14-S and 21-S ribosomal RNAs show that the 14 S ribosomal RNA gene has the same polarity as the nearest 21 S ribosomal RNA gene. 5. Tetrahymena mtDNA is (after Saccharomyces mtDNA) the second mtDNA in which the two ribosomal RNA cistrons are far apart and the first mtDNA in which one of the ribosomal RNA cistrons is duplicated.  相似文献   

13.
Ribosomal DNA in sturgeon is informative when analyzed at the molecular level because it bears unique characteristics that are, to a certain extent, ancestral within vertebrates. In this paper, we examine the structure and the molecular evolution of the 5S ribosomal DNA (rDNA) region in 13 sturgeon species, comparing both the 5S ribosomal RNA (rRNA) genes and the non-transcribed spacer (NTS) sequences between the coding regions. We have found that different NTS and 5S gene variants are intermixed in the 5S rDNA arrays of the different sturgeon species and that all variants are ancestral, having been maintained over many millions of years. Using predictive models, we have found similar levels of sequence diversity in the coding regions, as well as in the non-coding region, but fixed interspecific differences are underrepresented for 5S genes. However, contrary to the expectations, we have not found fixed differences between NTS sequences when comparing many pairs of species. Specifically, when they belong to the same phylogeographic clade of the four into which the sturgeon is divided, but fixation of mutations and divergence is found between species belonging to different phylogeographic clades. Our results suggest that the evolution of the two parts of the 5S rDNA region cannot be explained exclusively as the outcome of a balance between mutational, homogenizing (i.e., gene conversion as a predominant force in sturgeon), and selective forces. Rather, they suggest that other factors (i.e., hybridization) might be superimposed over those forces and thus could to some extent be masking their effects.  相似文献   

14.
15.
Characterization of cloned rat ribosomal DNA fragments   总被引:4,自引:0,他引:4  
Summary Two Charon 4A lambda bacteriophage clones were characterized which contain all and part of the 18S ribosomal DNA of the rat. One clone contained two Eco RI fragments which include the whole 18S ribosomal RNA region and part of 28S ribosomal RNA region. The other clone contained an Eco RI fragment which covers part of 18S ribosomal RNA region. There were differences between the two clones in the non-transcribed spacer regions suggesting that there is heterogeneity in the non-transcribed spacer regions of rat ribosomal genes. The restriction map of the cloned mouse ribosomal DNA. Eco RI, Hind III, Pst I, and Bam HI sites in 18S ribosomal RNA region were in the same places in mouse and rat DNA but the restriction sites in the 5-spacer regions were different.  相似文献   

16.
Doi, Roy H. (University of California, Davis), and Richard T. Igarashi. Heterogeneity of the conserved ribosomal ribonucleic acid sequences of Bacillus subtilis. J. Bacteriol. 92:88-96. 1966.-Hybrid formation was demonstrated between Bacillus subtilis ribosomal ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) from various bacterial species. The high degree of complementarity between B. subtilis ribosomal RNA and the DNA from B. cereus and B. stearothermophilus suggested a method to test whether the same RNA sequences were hybridizing with the DNA from these two species. Saturation studies with 16S and 23S RNA preparations from B. subtilis showed that a definite number of complementary sites was present in each DNA. Base composition analyses of the RNA in the hybrid demonstrated that ribosomal RNA sequences were involved. Hybrid competition studies revealed that B. stearothermophilus ribosomal RNA could compete totally against B. subtilis ribosomal RNA for B. stearothermophilus DNA, although it could compete only partially against the B. subtilis ribosomal RNA hybridizing with B. cereus DNA. These observations were made independently with both 16S and 23S ribosomal RNA preparations. These results revealed that different nucleotide sequences of B. subtilis ribosomal RNA were hybridizing with the DNA from B. cereus and B. stearothermophilus. Two possible interpretations of these results are: (i) different nucleotide sequences from a homogeneous ribosomal RNA population are hybridizing with heterologous DNA preparations, and (ii) ribosomal RNA cistrons are heterogeneous.  相似文献   

17.
18.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

19.
Precursor and mature ribosomal RNA molecules from Xenopus laevis were examined by electron microscopy. A reproducible arrangement of hairpin loops was observed in these molecules. Maps based on this secondary structure were used to determine the arrangement of sequences in precursor RNA molecules and to identify the position of mature rRNAs within the precursors. A processing scheme was derived in which the 40 S rRNA is cleaved to 38 S RNA, which then yields 34 S plus 18 S RNA. The 34 S RNA is processed to 30 S, and finally to 28 S rRNA. The pathway is analogous to that of L-cell rRNA but differs from HeLa rRNA in that no 20 S rRNA intermediate was found. X. laevis 40 S rRNA (Mr = 2.7 × 106) is much smaller than HeLa or L-cell 45 8 rRNA (Mr = 4.7 × 106), but the arrangement of mature rRNA sequences in all precursors is very similar. Experiments with ascites cell 3′-exonuclease show that the 28 S region is located at or close to the 5′-end of the 40 S rRNA.Secondary structure maps were obtained also for single-stranded molecules of ribosomal DNA. The region in the DNA coding for the 40 S rRNA could be identified by its regular structure, which closely resembles that of the RNA. Regions corresponding to the 40 S RNA gene alternate with non-transcribed spacer regions along strands of rDNA. The latter have a large amount of irregular secondary structure and vary in length between different repeating units. A detailed map of the rDNA repeating unit was derived from these experiments.Optical melting studies are presented, showing that rRNAs with a high (G + C) content exhibit significant hypochromicity in the formamide/urea-containing solution that was used for spreading.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号