首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
To gain further insight into the mechanism by which lactobacilli develop antimicrobial activity, we have examined how Lactobacillus acidophilus LB inhibits the promoted cellular injuries and intracellular lifestyle of Salmonella enterica serovar Typhimurium SL1344 infecting the cultured, fully differentiated human intestinal cell line Caco-2/TC-7. We showed that the spent culture supernatant of strain LB (LB-SCS) decreases the number of apical serovar Typhimurium-induced F-actin rearrangements in infected cells. LB-SCS treatment efficiently decreased transcellular passage of S. enterica serovar Typhimurium. Moreover, LB-SCS treatment inhibited intracellular growth of serovar Typhimurium, since treated intracellular bacteria displayed a small, rounded morphology resembling that of resting bacteria. We also showed that LB-SCS treatment inhibits adhesion-dependent serovar Typhimurium-induced interleukin-8 production.  相似文献   

2.
The objective of this study was to evaluate the efflux-mediated antibiotic resistance and virulence potential in Salmonella enterica serovar Typhimurium exposed to bile salts. S. enterica serovar Typhimurium KCCM 40253, S. enterica serovar Typhimurium CCARM 8009, and plasmid-cured S. enterica serovar Typhimurium CCARM 8009 were used to evaluate the antimicrobial susceptibility, adherence ability, and gene expression in the presence of 0.3 % bile salts. The sensitivity of S. enterica serovar Typhimurium CCARM 8009 to tetracycline was significantly increased in the presence of phenylalanine-arginine β-naphthylamide (PAβN), showing the decrease in the minimum inhibitory concentration (MIC) values from 256 to 8 mg/ml. The relative ethidium bromide (EtBr) fluorescence intensity was rapidly decreased from 1 to 0.47 in S. enterica serovar Typhimurium CCARM 8009 after 20 min of exposure to bile salts. The highest adhesion ability was observed in S. enterica serovar Typhimurium CCARM 8009 exposed to both absence and presence of bile salts. The tolC and tetA genes were up-regulated in S. enterica serovar Typhimurium CCARM 8009 exposed bile salts. The results suggest that the antimicrobial resistance were positively correlated with efflux pump activity, and virulence potential in antibiotic-resistant S. enterica serovar Typhimurium when exposed to bile salts.  相似文献   

3.
The human gastrointestinal microbiota produces antagonistic activities against gastrointestinal bacterial pathogens. We undertook a study to investigate the mechanism(s) by which a Lactobacillus acidophilus strain of human microbiota origin antagonizes the gram-negative enteroinvasive pathogen Salmonella enterica serovar Typhimurium. We showed that the cell-free culture supernatant of L. acidophilus strain LB (LB-CFCS) induced the following effects in S. enterica SL1344: (i) a decrease in intracellular ATP that paralleled bacterial death, (ii) the release of lipopolysaccharide, (iii) permeabilization of the bacterial membrane, and (iv) an increase in the sensitivity of Salmonella to the lytic action of sodium dodecyl sulfate. Finally, we showed using two mutant strains of Salmonella, PhoP MS7953s and PmrA JKS1170, that the two-component regulatory systems PhoP-PhoQ and PmrA-PmrB that regulate the mechanisms of resistance to antibacterial agents in Salmonella did not influence the anti-Salmonella effect of LB-CFCS.  相似文献   

4.
Brochocin-C is a two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 that has a broad activity spectrum comparable to that of nisin. Brochocin-C has an inhibitory effect on EDTA-treated gram-negative bacteria, Salmonella enterica serovar Typhimurium lipopolysaccharide mutants, and spheroplasts of Typhimurium strains LT2 and SL3600. Brochocin-C treatment of cells and spheroplasts of strains of LT2 and SL3600 resulted in hydrolysis of ATP. The outer membrane of gram-negative bacteria protects the cytoplasmic membrane from the action of brochocin-C. It appears that brochocin-C is similar to nisin and possibly does not require a membrane receptor for its function; however, the difference in effect of the two bacteriocins on intracellular ATP indicates that they cause different pore sizes in the cytoplasmic membrane.  相似文献   

5.
We performed an epidemiological study on Salmonella isolated from raw plant-based feed in Spanish mills. Overall, 32 different Salmonella serovars were detected. Despite its rare occurrence in humans and animals, Salmonella enterica serovar California was found to be the predominant serovar in Spanish feed mills. Different typing techniques showed that isolates of this serovar were genetically closely related, and comparative genomic hybridization using microarray technology revealed 23 S. enterica serovar Typhimurium LT2 gene clusters that are absent from serovar California.  相似文献   

6.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

7.
Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10°C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum temperature >20°C) summer conditions is not recommended when vegetable planting is done between the time of manure application and late summer. A late fall manure application will not increase the risk of contaminating vegetables planted the next spring, since further experiments showed that repeated freeze-thaw cycles were detrimental to the survival of S. enterica serovar Typhimurium and E. coli in manure-fertilized soil. The number of indigenous E. coli in soil was never significantly lower (P < 0.05) than that of S. enterica serovar Typhimurium, suggesting its usefulness as an indicator organism for evaluating the risk of vegetable contamination with manure-borne S. enterica serovar Typhimurium.  相似文献   

8.
9.
Ubiquitinated aggregates are formed in eukaryotic cells in response to several external stimuli, including exposure to bacterial lipopolysaccharide (LPS). Although Salmonella enterica serovar Typhimurium (S. Typhimurium) LPS has been shown to induce aggresome-like induced structures (ALIS) in macrophages, these have not been described in S. Typhimurium-infected macrophages. Given that LPS is present in infection, this suggests that S. Typhimurium might suppress the formation of ALIS. We found that S. Typhimurium induces the formation of ubiquitinated aggregates in epithelial cells and macrophages, but that their presence is masked by the deubiquitinase (DUB) activity of the S. Typhimurium virulence protein, SseL. SseL deubiquitinates SQSTM1/p62-bound proteins found in S. Typhimurium-induced aggregates and ALIS, and reduces the recruitment of autophagic components. While the functions of ALIS and other ubiquitinated aggregates remain unclear, they serve to sequester cytosolic proteins under a variety of stress conditions and are suggested to be involved in host immune defense. During infection, the deubiquitinase activity of SseL reduces autophagic flux in infected cells and favors bacterial replication. This is a new example of how a bacterial pathogen counteracts the autophagy pathway through the action of a translocated virulence protein.  相似文献   

10.
Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells.  相似文献   

11.
We have studied the inactivation of six gram-negative bacteria (Escherichia coli, Pseudomonas fluorescens, Salmonella enterica serovar Typhimurium, Salmonella enteritidis, Shigella sonnei, and Shigella flexneri) by high hydrostatic pressure treatment in the presence of hen egg-white lysozyme, partially or completely denatured lysozyme, or a synthetic cationic peptide derived from either hen egg white or coliphage T4 lysozyme. None of these compounds had a bactericidal or bacteriostatic effect on any of the tested bacteria at atmospheric pressure. Under high pressure, all bacteria except both Salmonella species showed higher inactivation in the presence of 100 μg of lysozyme/ml than without this additive, indicating that pressure sensitized the bacteria to lysozyme. This extra inactivation by lysozyme was accompanied by the formation of spheroplasts. Complete knockout of the muramidase enzymatic activity of lysozyme by heat treatment fully eliminated its bactericidal effect under pressure, but partially denatured lysozyme was still active against some bacteria. Contrary to some recent reports, these results indicate that enzymatic activity is indispensable for the antimicrobial activity of lysozyme. However, partial heat denaturation extended the activity spectrum of lysozyme under pressure to serovar Typhimurium, suggesting enhanced uptake of partially denatured lysozyme through the serovar Typhimurium outer membrane. All test bacteria were sensitized by high pressure to a peptide corresponding to amino acid residues 96 to 116 of hen egg white, and all except E. coli and P. fluorescens were sensitized by high pressure to a peptide corresponding to amino acid residues 143 to 155 of T4 lysozyme. Since they are not enzymatically active, these peptides probably have a different mechanism of action than all lysozyme polypeptides.  相似文献   

12.
Intestinal inflammation changes the luminal habitat for microbes through mechanisms that have not been fully resolved. We noticed that the FepE regulator of very long O-antigen chain assembly in the enteric pathogen Salmonella enterica serotype Typhimurium (S. Typhimurium) conferred a luminal fitness advantage in the mouse colitis model. However, a fepE mutant was not defective for survival in tissue, resistance to complement or resistance to polymyxin B. We performed metabolite profiling to identify changes in the luminal habitat that accompany S. Typhimurium-induced colitis. This analysis suggested that S. Typhimurium-induced colitis increased the luminal concentrations of total bile acids. A mutation in fepE significantly reduced the minimal inhibitory concentration (MIC) of S. Typhimurium for bile acids in vitro. Oral administration of the bile acid sequestrant cholestyramine resin lowered the concentrations of total bile acids in colon contents during S. Typhimurium infection and significantly reduced the luminal fitness advantage conferred by the fepE gene in the mouse colitis model. Collectively, these data suggested that very long O-antigen chains function in bile acid resistance of S. Typhimurium, a property conferring a fitness advantage during luminal growth in the inflamed intestine.  相似文献   

13.
Salmonella enterica subsp. enterica serovar 4,[5],12:i:− is a monophasic variant of S. enterica serovar Typhimurium (antigenic formula 4,[5],12:i:1,2). Worldwide, especially in several European countries and the United States, it has been reported among the 10 most frequently isolated serovars in pigs and humans. In the study reported here, 148 strains of the monophasic serovar isolated from pigs, pork, and humans in 2006 and 2007 in Germany were characterized by various phenotypic and genotypic methods. This characterization was done in order to investigate their clonality, the prevalence of identical subtypes in pigs, pork, and humans, and the genetic relatedness to other S. enterica serovar Typhimurium subtypes in respect to the pathogenic and resistance gene repertoire. Two major clonal lineages of the monophasic serovar were detected which can be differentiated by their phage types and pulsed-field gel electrophoresis (PFGE) profiles. Seventy percent of the strains tested belonged to definite phage type DT193, and those strains were mainly assigned to PFGE cluster B. Nineteen percent of the strains were typed to phage type DT120 and of these 86% belonged to PFGE cluster A. Sixty-five percent of the isolates of both lineages carried core multiresistance to ampicillin, streptomycin, tetracycline, and sulfamethoxazole encoded by the genes blaTEM1-like, strA-strB, tet(B), and sul2. No correlation to the source of isolation was observed in either lineage. Microarray analysis of 61 S. enterica serovar 4,[5],12:i:− and 20 S. enterica serovar Typhimurium isolates tested determining the presence or absence of 102 representative pathogenicity genes in Salmonella revealed no differences except minor variations in single strains within and between the serovars, e.g., by presence of the virulence plasmid in four strains. Overall the study indicates that in Germany S. enterica serovar 4,[5],12:i:− strains isolated from pig, pork, and human are highly related, showing their transmission along the food chain. Since the pathogenicity gene repertoire is highly similar to that of S. enterica serovar Typhimurium, it is essential that interventions are introduced at the farm level in order to limit human infection.Salmonella enterica subsp. enterica serovar Typhimurium is a ubiquitous serovar that usually induces gastroenteritis in a broad range of unrelated host species. Following the White-Kauffmann-Le Minor scheme, the seroformula for S. enterica serovar Typhimurium is 4,[5],12:i:1,2 (14). Salmonella serotyping is based on antigenic variability of lipopolysaccharides (O antigen) and flagellar proteins (H1 and H2 antigens).In the mid-1990s a monophasic S. enterica serovar with the seroformula 4,[5],12:i:− started to emerge in Europe (10). Initial characterization of isolates from pig samples in Spain in 1997 demonstrated that this serovar in comparison with S. enterica serovar Typhimurium (4,[5],12:i:1,2) lacked the fljB gene encoding the structural subunit of the phase two flagellar (H2) antigen (11). The predominant phage type was U302. Another DNA microarray-based typing study indicated that the monophasic serovar had a gene repertoire highly similar to that of S. enterica serovar Typhimurium, indicating a close genetic relatedness between the serovars (13). Similarly, multi-locus sequence typing showed that S. enterica serovar 4,[5],12:i:− and S. enterica serovar Typhimurium represent a highly clonal group (23).Within the last years S. enterica serovar 4,[5],12:i:− has increasingly been implicated in human disease worldwide (1, 10, 24, 25). Recently, larger outbreaks caused by this serovar have been reported from Luxembourg and the United States (5, 19). A European Union (EU) baseline survey on the prevalence of Salmonella in slaughter-age pigs in 2006 to 2007 revealed that the monophasic serovar was isolated from pigs in 9 of 25 participating member states (12). At the EU level, S. enterica serovar 4,[5],12:i:− was the fourth most prevalent serovar in slaughter-age pigs. In Germany it was the second most prevalent serovar after S. enterica serovar Typhimurium (12). Between 1999 and 2008 the proportion of S. enterica serovar 4,[5],12:i:− isolates among all S. enterica isolates received by the German National Reference Laboratory for Salmonella increased from 0.1% to 8.3% (305 isolates in 2008), with the most remarkable increase between 2006 and 2007. Most of these strains (48% on average between 2006 and 2008) were isolated from pigs, followed by cattle (13%), poultry (5%), and other isolates sporadically found in the environment, wildlife, and reptiles. Remarkably, the annual proportion of the monophasic serovar among all S. enterica serovar 4,[5],12:i:− and S. enterica serovar Typhimurium isolates increased from 0.3% to 32.7% in the same decade. Interestingly, the number of S. enterica serovar 4,[5],12:i:− strains isolated from humans and sent on voluntary basis to the National Reference Centre for Salmonella and other Enterics increased from 0.1% in 1999 to 14.0% (456 isolates) in 2008. Likewise, the proportion of the monophasic serovar among all S. enterica serovar 4,[5],12:i:− and S. enterica serovar Typhimurium isolates increased from 0.3% to 42.8% in the same time because of declining numbers of S. enterica serovar Typhimurium isolates.In the present study a collection of S. enterica serovar 4,[5],12:i:− strains isolated from pigs, pork, and humans in Germany during the years 2006 and 2007 was examined using phenotypic and molecular methods. The aim of the analyses was to gain a better understanding of the clonality of the serovar and of the ability of its subtypes to be transmitted to humans via pigs and pork. Additionally, the genetic relatedness as well as the pathogenicity and antimicrobial resistance gene repertoire of S. enterica serovar 4,[5],12:i:− was compared with selected S. enterica serovar Typhimurium strains representing corresponding phage types in order to estimate the potential health risk for humans.  相似文献   

14.
Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb)-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.  相似文献   

15.
The purpose of the present study was to examine the activity of the human Lactobacillus acidophilus strain LB, which secretes an antibacterial substance(s) against Helicobacter pylori in vitro and in vivo. The spent culture supernatant (SCS) of the strain LB (LB-SCS) dramatically decreased the viability of H. pylori in vitro independent of pH and lactic acid levels. Adhesion of H. pylori to the cultured human mucosecreting HT29-MTX cells decreased in parallel with the viability of H. pylori. In conventional mice, oral treatment with the LB-SCS protected against infection with Helicobacter felis. Indeed, at both 8 and 49 days post-LB-SCS treatment (29 and 70 days postinfection), inhibition of stomach colonization by H. felis was observed, and no evidence of gastric histopathological lesions was found. LB-SCS treatment inhibits the H. pylori urease activity in vitro and in H. pylori that remained associated with the cultured human mucosecreting HT29-MTX cells. Moreover, a decrease in urease activity was detected in the stomach of the mice infected with H. felis and treated with LB-SCS.  相似文献   

16.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen with the ability to survive and replicate in macrophages. Periplasmic copper binding protein CueP is known to confer copper resistance to S. Typhimurium, and has been implicated in ROS scavenge activity by transferring the copper ion to a periplasmic superoxide dismutase or by directly reducing the copper ion. Structural and biochemical studies on CueP showed that its copper binding site is surrounded by conserved cysteine residues. Here, we present evidence that periplasmic disulfide isomerase DsbC plays a key role in maintaining CueP protein in the reduced state. We observed purified DsbC protein efficiently reduced the oxidized form of CueP, and that it acted on two (Cys104 and Cys172) of the three conserved cysteine residues. Furthermore, we found that a surface-exposed conserved phenylalanine residue in CueP was important for this process, which suggests that DsbC specifically recognizes the residue of CueP. An experiment using an Escherichia coli system confirmed the critical role played by DsbC in the ROS scavenge activity of CueP. Taken together, we propose a molecular insight into how CueP collaborates with the periplasmic disulfide reduction system in the pathogenesis of the bacteria.  相似文献   

17.
The biofilms and rugose colony morphology of Salmonella enterica serovar Typhimurium strains are usually associated with at least two different exopolymeric substances (EPS), curli and cellulose. In this study, another EPS, a capsular polysaccharide (CP) synthesized constitutively in S. enterica serovar Typhimurium strain DT104 at 25 and 37°C, has been recognized as a biofilm matrix component as well. Fluorophore-assisted carbohydrate electrophoresis (FACE) analysis indicated that the CP is comprised principally of glucose and mannose, with galactose as a minor constituent. The composition differs from that of known colanic acid-containing CP that is isolated from cells of Escherichia coli and other enteric bacteria grown at 37°C. The reactivity of carbohydrate-specific lectins conjugated to fluorescein isothiocyanate or gold particles with cellular carbohydrates demonstrated the cell surface localization of CP. Further, lectin binding also correlated with the FACE analysis of CP. Immunoelectron microscopy, using specific antibodies against CP, confirmed that CP surrounds the cells. Confocal microscopy of antibody-labeled cells showed greater biofilm formation at 25°C than at 37°C. Since the CP was shown to be produced at both 37°C and 25°C, it does not appear to be significantly involved in attachment during the early formation of the biofilm matrix. Although the attachment of S. enterica serovar Typhimurium DT104 does not appear to be mediated by its CP, the capsule does contribute to the biofilm matrix and may have a role in other features of this organism, such as virulence, as has been shown previously for the capsules of other gram-negative and gram-positive bacteria.  相似文献   

18.
Storage of Salmonella enterica serovar Typhimurium strains in soil and water microcosms resulted in loss of culturability on standard plating media. Prior incubation in buffered peptone water supplemented with ferrioxamine E markedly extended the time that bacteria were recoverable by plating, except in the case of mutants deficient in ferrioxamine E uptake.  相似文献   

19.
A two-by-two factorial experiment with pigs was conducted to study the effect of feed grinding (fine and coarse) and feed processing (pelleted and nonpelleted) on physicochemical properties, microbial populations, and survival of Salmonella enterica serovar Typhimurium DT12 in the gastrointestinal tracts of pigs. Results demonstrated a strong effect of diet on parameters measured in the stomachs of the pigs, whereas the effect was less in the other parts of the gastrointestinal tract. Pigs fed the coarse nonpelleted (C-NP) diet showed more solid gastric content with higher dry matter content than pigs fed the fine nonpelleted (F-NP), coarse pelleted (C-P), or fine pelleted (F-P) diet. Pigs fed the C-NP diet also showed significantly increased number of anaerobic bacteria (P < 0.05), increased concentrations of organic acids, and reduced pH in the stomach. In addition, pigs fed the C-NP diet showed increased in vitro death rate of S. enterica serovar Typhimurium DT12 in content from the stomach (P < 0.001). Pigs fed the C-NP diet had a significantly higher concentration of undissociated lactic acid in gastric content than pigs fed the other diets (P < 0.001). A strong correlation between the concentration of undissociated lactic acid and the death rate of S. enterica serovar Typhimurium DT12 was found. In the distal small intestine, cecum, and midcolon, significantly lower numbers of coliform bacteria were observed in pigs fed the coarse diets than in pigs fed the fine diets (P < 0.01). Pigs fed the C-NP diet showed the lowest number of coliform bacteria in these segments of the gastrointestinal tract. Pigs fed the coarse diets showed increased concentration of butyric acid in the cecum (P < 0.05) and colon (P < 0.10) compared with pigs fed the fine diets. It was concluded that feeding a coarsely ground meal feed to pigs changes the physicochemical and microbial properties of content in the stomach, which decreases the survival of Salmonella during passage through the stomach. In this way the stomach acts as a barrier preventing harmful bacteria from entering and proliferating in the lower part of the gastrointestinal tract.  相似文献   

20.
Salmonella enterica serovar Typhimurium DT104 11601was tested for its ability to maintain viability in minimal, chemically defined solutions. Periodic monitoring of growth and survival in microcosms of different ion concentrations, maintained at various temperatures, showed a gradual decline in culturable organisms (~235 days) at 5°C. Organisms maintained at a higher temperature (21°C) showed continuous, equivalent CFU per milliliter (~106) up to 400 days after inoculation. Fluorescence microscopy with Baclight revealed that nonculturable cells were actually viable, while observations with scanning electron microscopy showed that the cells had retained their structural integrity. Temperature upshift (56°C ± 0.5, 15 s) of the nonculturable organisms (5°C) in Trypticase soy broth followed by immediate inoculation onto Trypticase soy agar (TSA) gave evidence of resuscitation. Interestingly, S. enterica serovar Typhimurium DT104 from the microcosms at either 5°C (1 to 200 days) or 21°C (1 to 250 days) did not show enhanced growth after intermittent inoculation onto catalase-supplemented TSA. Furthermore, cells from 21°C microcosms exposed to oxidative and osmotic stress showed greater resistance to stresses over increasing times of exposure than did recently grown cells. It is possible that the exceptional survivability and resilience of this particular strain may in part reflect the growing importance of this multidrug-resistant organism, in general, as a cause of intestinal disease in humans. The fact that S. enterica serovar Typhimurium DT104 11601 is capable of modifying its physiological characteristics, including entry into and recovery from the viable but nonculturable state, suggests the overall possibility that S. enterica serovar Typhimurium DT104 may be able to respond uniquely to various adverse environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号