首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lung transplantation is the only definitive treatment modality for many forms of end-stage lung disease. However, the lung is rejected more often than any other type of solid organ allograft due to chronic rejection known as bronchiolitis obliterans (BO). Indeed, BO is the primary reason why the 5- and 7-yr survival rates are worse for the lung than for any other transplanted organ. Alloimmunity to donor antigens is established as the primary mechanism that mediates rejection responses. However, newer immunosuppressive regimens designed to abrogate alloimmune activation have not improved survival. Therefore, these data suggest that other antigens, unrelated to donor transplantation antigens, are involved in rejection. Utilizing human and rodent studies of lung transplantation, our laboratory has documented that a native collagen, type V collagen [col(V)], is a target of the rejection response. Col(V) is highly conserved; therefore, these data indicate that transplant rejection involves both alloimmune and autoimmune responses. The role of col(V) in lung transplant rejection is described in this review article. In addition, the potential role of regulatory T cells that are crucial to modulating autoimmunity and alloimmunity is also discussed.  相似文献   

2.
The regulation of the cellular immune response in lung diseases is not yet fully understood. Isolating different subsets of immune cells directly from the lung is therefore an indispensable method of gaining detailed knowledge on the function of these cells in this organ. This protocol describes a method of isolating and magnetically labeling CD4+ lung T cells, which are then loaded and retained on the column while all other cells run through it (positive selection). The yield of this isolation is approximately 5 x 10(5) to 1.5 x 10(6) CD4+ cells from a murine lung. These cells can be further investigated by several methods such as flow cytometry, western blot analysis, RT-PCR, immunostaining and ELISA. In addition, lung CD4+ T cells alone or along with other immunologically important cells such as CD8+ T cells and T regulatory cells can be adoptively transferred into immune-deficient mice, and can influence important local parameters. This protocol can be completed in approximately 4 h 20 min.  相似文献   

3.
4.
5.
Protein kinase C (PKC)-theta mediates the critical TCR signals required for T cell activation. Previously, we have shown that in response to TCR stimulation, PKC-theta-/- T cells undergo apoptosis due to greatly reduced levels of the anti-apoptotic molecule, Bcl-xL. In this study, we demonstrate that PKC-theta-regulated expression of Bcl-xL is essential for T cell-mediated cardiac allograft rejection. Rag1-/- mice reconstituted with wild-type T cells readily rejected fully mismatched cardiac allografts, whereas Rag1-/- mice reconstituted with PKC-theta-/- T cells failed to promote rejection. Transgenic expression of Bcl-xL in PKC-theta-/- T cells was sufficient to restore cardiac allograft rejection, suggesting that PKC-theta-regulated survival is required for T cell-mediated cardiac allograft rejection in this adoptive transfer model. In contrast to adoptive transfer experiments, intact PKC-theta-/- mice displayed delayed, but successful cardiac allograft rejection, suggesting the potential compensation for PKC-theta function. Finally, a subtherapeutic dose of anti-CD154 Ab or CTLA4-Ig, which was not sufficient to prevent cardiac allograft rejection in the wild-type mice, prevented heart rejection in the PKC-theta-/- mice. Thus, in combination with other treatments, inhibition of PKC-theta may facilitate achieving long-term survival of allografts.  相似文献   

6.
Lethally irradiated mice reject within 24 h certain marrow grafts, a phenomenon called either allogeneic or hybrid resistance. The cells responsible for this rejection (NK1+ CD3+ cells (TNK) express Ag of NK cells as well as the TCR-associated CD3 complex. This raises the question whether TCR participate in the function of these cells during graft rejection. By using flow cytometry it is shown that the majority of TNK cells expresses the TCR-alpha/beta chains and by using adoptive cell transfer assays evidence is presented that it is the TCR-alpha/beta expressing cells that cause rejection. To explore whether any particular TCR chains have to be expressed on these cells, C57L mice were assayed and found to be responders suggesting that the V beta chains deleted in these mice are not obligatory. However, introduction of a specific TCR V beta 5 chain into C57BL/6 mice as a transgene leads to inability to transfer resistance. TNK cells of V beta 5 transgenic mice express the introduced gene suggesting that it is the transgenic TCR that is responsible for the lack of function. In assessing T cell functions in V beta 5 transgenic mice it is shown that although these mice generate CTL specific for H-2d targets there is a deficiency to recognize H-2Dd, i.e., of determinants presumed to be recognized in the acute rejection mechanism. Thus TNK cells and CTL share the inability to recognize H-2Dd epitopes due to expression of the V beta 5 transgene. The notion that TCR on TNK cells play a role in the acute rejection process makes it necessary to postulate a receptor selection mechanism for these cells.  相似文献   

7.
The role of the CC chemokine, RANTES, in acute lung allograft rejection   总被引:12,自引:0,他引:12  
Lung transplantation is a therapeutic option for patients with end-stage lung disease. Acute allograft rejection is a major complication of lung transplantation and is characterized by the infiltration of activated mononuclear cells. The specific mechanisms that recruit these leukocytes have not been fully elucidated. The CC chemokine, RANTES, is a potent mononuclear cell chemoattractant. In this study we investigated RANTES involvement during acute lung allograft rejection in humans and in a rat model system. Patients with allograft rejection had a 2.3-fold increase in RANTES in their bronchoalveolar lavages compared with healthy allograft recipients. Rat lung allografts demonstrated a marked time-dependent increase in levels of RANTES compared with syngeneic control lungs. RANTES levels correlated with the temporal recruitment of mononuclear cells and the expression of RANTES receptors CCR1 and CCR5. To determine RANTES involvement in lung allograft rejection, lung allograft recipients were passively immunized with either anti-RANTES or control Abs. In vivo neutralization of RANTES attenuated acute lung allograft rejection and reduced allospecific responsiveness by markedly decreasing mononuclear cell recruitment. These experiments support the idea that RANTES, and the expression of its receptors have an important role in the pathogenesis of acute lung allograft rejection.  相似文献   

8.
We studied the effects of the indirect pathway of allograft recognition using T cells from TCR transgenic Marilyn mice, which recognize the male Ag H-Y in an I-A(b)-restricted fashion. The T cells are not alloreactive to the H-2(k) haplotype, because they are not activated when adoptively transferred into recombinase-activating gene-2(-/-) common gamma-chain(-/-) double-mutant H-2(k) male or female mice. However, skin from H-2(k) males, but not from H-2(k) females, is acutely rejected by recombinase-activating gene-2(-/-) transgenic female recipients. In vitro, Marylin spleen cells primed by H-2(k) skin grafting proliferated and secreted both IL-4 and IFN-gamma in response to H-2(k) male stimulators. However, the removal of H-2(b) APC from the responding population abolished the response. Taken together, these results show that the indirect recognition that triggers rejection in this model is due to the recognition of H-Y Ag shed from H-2(k) male allograft and presented by the recipient's own I-A(b) APC to transgenic T cells. This study demonstrates unequivocally the capacity of naive CD4(+) T cells to promote the rejection of allografts through mechanisms that involve indirect destruction of grafted tissues.  相似文献   

9.
10.
Trehalose dimycolate, a glycolipid component of the cell walls of mycobacteria, induces interstitial pneumonitis and alveolar hemorrhages in C57BL/6 and C57BL/10 mice. Homozygous nude (nu/nu) mice of these backgrounds are not susceptible to this form of pulmonary injury. However, after administration of T-lymphocyte-enriched spleen cell preparations from syngeneic donors, homozygous nude mice become susceptible to trehalose dimycolate. The observations suggest that production of pulmonary lesions by this mycobacterial component is dependent on T lymphocytes. While the mechanisms are still under study, we propose that trehalose dimycolate can function as an activator of T lymphocytes and that products of activated T cells are responsible for production of the pulmonary lesions.  相似文献   

11.
Transplant rejection is mediated primarily by adaptive immune cells such as T cells and B cells. The T and B cells are also responsible for the specificity and memory of the rejection response. However, destruction of allografts involves many other cell types including cells in the innate immune system. As the innate immune cells do not express germline-encoded cell surface receptors that directly recognize foreign Ags, these cells are thought to be recruited by T cells to participate in the rejection response. In this study, we examined the alloreactivity of the innate NK cells in Rag(-/-) mice using a stringent skin transplant model and found that NK cells at a resting state readily reject allogeneic cells, but not the skin allografts. We also found that IL-15, when preconjugated to its high affinity IL-15Ralpha-chain, is remarkably potent in stimulating NK cells in vivo, and NK cells stimulated by IL-15 express an activated phenotype and are surprisingly potent in mediating acute skin allograft rejection in the absence of any adaptive immune cells. Furthermore, NK cell-mediated graft rejection does not show features of memory responses. Our data demonstrate that NK cells are potent alloreactive cells when fully activated and differentiated under certain conditions. This finding may have important clinical implications in models of transplantation and autoimmunity.  相似文献   

12.
We studied 78 patients with Lyme disease to determine how immune complexes and autoantibodies are related to the development of chronic Lyme arthritis. Circulating C1q binding material was found in nearly all patients at onset of erythema chronicum migrans, the skin lesion that marks the onset of infection with the causative spirochete. In patients with only subsequent arthritis this material tended to localize to joints where it gradually increased in concentrations with greater duration of joint inflammation. In joints, its concentration correlated positively with the number of synovial fluid polymorphonuclear leukocytes. Despite the prolonged presence of putative immune complexes, rheumatoid factors could not be demonstrated. These observations suggest that phlogistic immune complexes based on spirochete antigens form locally within joints during chronic Lyme arthritis.  相似文献   

13.
In this study, cellular requirements for rejection are examined by the use of adoptive transfer assays in the ACI to Lewis cardiac allograft model. The findings show that adoptive transfer of 1 x 10(8) spleen cells (SpL), 5 x 10(7) T-cells, and 2 x 10(7) helper T-cells (W3/25+) obtained from normal, nonsensitized donors restores acute ACI graft rejection in sublethally irradiated (750 rad) Lewis recipients. In contrast, reconstitution with 2 x 10(7) cytotoxic T-cells (0X8+) does not restore first-set graft rejection. Reconstitution of the irradiated recipients with either W3/25+ or 0X8+ T-cells obtained from specifically sensitized syngeneic donors resulted in acute rejection. The W3/25+ T-cell subset was significantly more potent (P less than 0.01) in effecting rejection on a per-cell basis. Adoptive transfer of SpL, T-cells, and 0X8+ T-cells obtained from sensitized rats led to accelerated cardiac allograft rejection in the naive secondary recipients while W3/25+ T-cells did not. This study suggests that although the W3/25+ T-cells alone have the capacity to initiate first-set graft rejection, both W3/25+ and 0X8+ subsets appear to be critical to the completion of rejection of heart allografts. We also examined the capacity of adoptively transferred B-cells from sensitized donors to influence graft rejection. Our findings suggest that while B-cells fail to restore the capacity for graft rejection in irradiated recipients, they can, however, present MHC antigens to the secondary naive host thus causing allosensitization which results in accelerated rejection of a subsequent graft.  相似文献   

14.
The pathogenesis of systemic vasculitis is complex and is likely to involve many mechanisms. There is a growing body of evidence that T cells may contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Predominantly, T cells and monocytes are found in inflammatory infiltrates in patients with Wegener's granulomatosis (WG). The production of ANCA appears to be T-cell-dependent. T lymphocytes from the peripheral blood of patients with ANCA-associated vasculitis have been shown to proliferate in response to proteinase 3 (PR3). These and other findings outlined in this review indicate T-cell involvement, although further studies are still needed to elucidate the exact contribution of T cells to the pathogenesis of systemic vasculitis.  相似文献   

15.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.  相似文献   

16.
Peripheral T cell homeostasis results from a balance between factors promoting survival and those that trigger deletion of Ag-reactive cells. The cytokine IL-2 promotes T cell survival whereas reactive oxygen species (ROS) sensitize T cells to apoptosis. Two pathways of activated T cell apoptosis-one triggered by Fas ligand and the other by cytokine deprivation-depend on ROS, with the latter also regulated by members of the Bcl-2 family. Notch family proteins regulate several cell-fate decisions in metazoans. Ectopic expression of the Notch1 intracellular domain (NICD) in T cells inhibits Fas-induced apoptosis. The underlying mechanism is not known and the role, if any, of Notch in regulating apoptosis triggered by cytokine deprivation or neglect has not been examined. In this study, we use a Notch1/Fc chimera; a blocking Ab to Notch1 and chemical inhibitors of gamma-secretase to investigate the role of Notch signaling in activated T cells of murine origin. We show that perturbing Notch signaling in activated CD4+/CD8+ T cells maintained in IL-2 results in the accumulation of ROS, reduced Akt/protein kinase B activity, and expression of the antiapoptotic protein Bcl-xL, culminating in apoptosis. A broad-spectrum redox scavenger inhibits apoptosis but T cells expressing mutant Fas ligand are sensitive to apoptosis. Activated T cells isolated on the basis of Notch expression (Notch+) are enriched for Bcl-xL expression and demonstrate reduced susceptibility to apoptosis triggered by neglect or oxidative stress. Furthermore, enforced expression of NICD protects activated T cells from apoptosis triggered by cytokine deprivation. Taken together, these data implicate Notch1 signaling in the cytokine-dependent survival of activated T cells.  相似文献   

17.
Corneal transplantation is the most common solid organ transplantation. The immunologically privileged nature of the cornea results in high success rates. However, T cell-mediated rejection is the most common cause of corneal graft failure. Using antiangiogenesis treatment to prevent corneal neovascularization, which revokes immune privilege, prevents corneal allograft rejection. Endostatin is an antiangiogenic factor that maintains corneal avascularity. In this study, we directly test the role of antiangiogenic and immunological signals in corneal allograft survival, specifically the potential correlation of endostatin production and T cell recruitment. We report that 75% of the corneal allografts of BALB/c mice rejected after postoperative day (POD) 20, whereas all syngeneic grafts survived through POD60. This correlates with endogenous endostatin, which increased and remained high in syngeneic grafts but decreased after POD10 in allografts. Immunostaining demonstrated that early recruitment of allospecific T cells into allografts around POD10 correlated with decreased endostatin production. In Rag(-/-) mice, both allogeneic and syngeneic corneal grafts survived; endostatin remained high throughout. However, after T cell transfer, the allografts eventually rejected, and endostatin decreased. Furthermore, exogenous endostatin treatment delayed allograft rejection and promoted survival secondary to angiogenesis inhibition. Our results suggest that endostatin plays an important role in corneal allograft survival by inhibiting neovascularization and that early recruitment of allospecific T cells into the grafts promotes destruction of endostatin-producing cells, resulting in corneal neovascularization, massive infiltration of effector T cells, and ultimately graft rejection. Therefore, combined antiangiogenesis and immune suppression will be more effective in maintaining corneal allograft survival.  相似文献   

18.
It has been widely assumed that T cells from TCR-transgenic (Tg) mice better represent the behavior of T cells from normal mice than do in vitro cultures of T cell clones. We have found that autoreactive T cells arising in the presumably more physiological environment of the BDC-2.5 TCR-Tg mouse, despite being apparently "naive" in surface phenotype, are highly activated functionally and do not resemble CD4(+) T cells from a spontaneously diabetic nonobese diabetic (NOD) mouse or the NOD-derived, diabetogenic CD4(+) T cell clone of origin, BDC-2.5. Our results suggest that autoreactive T cells cloned from the spontaneously diabetic NOD mouse more closely resemble effector T cells arising during the natural disease process.  相似文献   

19.
Th17 cells are thought to play a pathogenic role in various autoimmune diseases. Cytokines secreted by Th17 cells like IL-17, IL-17F and IL-22 have the capacity to mediate a massive inflammatory response. These proinflammatroy cytokines are likely to mediate the pathogenic potential of Th17 cells. Recent evidence suggests a role for Th17 cells in the breach of immune tolerance. This might shed some new light on the pathogenic role of Th17 cells in autoimmunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号