首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and accurate method for the determination of tetracycline in human plasma and urine is presented. Determination of tetracycline in plasma is based on precipitation of plasma proteins with trifluoroacetic acid, followed by injection of the centrifuged plasma sample onto a μBondapak C18 column. Acetonitrile in phosphate buffer pH 2.2 is used as mobile phase. Only tetracycline, and no trace of lumecycline can be detected in plasma and urine after administration of lumecycline, indicating that lumecycline is completely degraded to tetracycline, lysine and formaldehyde in the gastrointestinal tract prior to absorption.Determination of tetracycline in urine was performed by injection of urine diluted with phosphoric acid onto a μBondapak Phenyl column. The precision of determination of tetracycline in plasma, expressed as the relative standard deviation, was < 3% at tetracycline concentrations of 0.05 and 3.7 μg/ml. Urine determinations were made with a precision of < 1.5% at tetracycline concentrations of 0.5 and 6.7 μg/ml.  相似文献   

2.
A rapid and simple method for determination of the novel antiepileptic compound gabapentin [1-(aminomethyl)cyclohexaneacetic acid] in plasma is described. Blank human plasma was spiked with gabapentin (1.0–10.0 μg/ml) and internal standard [1-(aminomethyl)-cycloheptaneacetic acid; 5.0 μg/ml]. Individual samples were treated with 2 M perchloric acid, centrifuged and then derivatised with o-phthalaldehyde-3-mercaptopropionic acid. Separation was achieved on a Beckman Ultrasphere 5 μm reversed-phase column with mobile phase consisting of 0.33 M acetate buffer (pH 3.7; containing 100 mg/l EDTA)-methanol-acetonitrile (40:30:30, v/v). Eluents were monitored by fluorescence spectroscopy with excitation and emission wavelengths of 330 and 440 nm, respectively. The calibration curve for gabapentin in plasma was linear (r=0.9997) over the concentration range 1.0–10.0 μg/ml. Recovery was seen to be 90%. The inter- and intra-assay variations for three different gabapentin concentrations were 10% throughout. The lower limit of quantitation was found to be 0.5 μg/ml. Chromatography was unaffacted by a range of commonly employed antiepileptic drugs or selected amino acids.  相似文献   

3.
A capillary electrophoresis method was developed for the determination of the antibiotic fosfomycin in serum, cerebrospinal fluid and aqueous humor. The technique uses indirect UV detection and the working buffer includes an organic cation to improve fosfomycin mobility. The electrophoretic time of migration is less than 7 min in both fluids. The limit of quantification is 2.5 and 1 μg/ml in serum and aqueous fluids, respectively (signal-to-noise RATIO = 3). The method was validated in serum and water over the concentration range 2.5–200 μg/ml. The calibration graph for serum was linear with a correlation coefficient r = 0.999. At a fosfomycin concentration of 2.5 μg/ml in serum, the intra- and inter-day precisions (coefficients of variation) were 5 and 5.2%, respectively. The mean recovery in serum was 94.5% (S.D. = 2.4%).  相似文献   

4.
An analytical method for the determination of lycopene in tissues and plasma of rats is described. The method was validated for the determination of lycopene in liver and plasma with respect to selectivity, linearity, accuracy, recovery and precision. Following precipitation of proteins with water–ethanol plasma was extracted with hexane; tissues were extracted with acetone followed by precipitation of proteins with water–ethanol and extraction of lycopene with hexane. Separation and quantification of geometrical isomers of lycopene was achieved by normal-phase HPLC with UV/VIS detection at 471 nm. The method proved to be selective and specific for lycopene in plasma and liver. Detector response was linear in the range from 2 ng/g to 10 μg/g liver and 0.5 ng/ml to 2 μg/ml plasma, respectively. Average recoveries ranged from 96 to 101% in spiked liver samples and from 91 to 94% in spiked plasma samples. Intra-day variability (C.V.) was ≤6% and ≤5% in liver and plasma, respectively. Inter-day precision was ≤9% for liver samples and ≤6% for plasma samples. The procedures were successfully applied to the sample analysis of pharmacokinetic and metabolism studies.  相似文献   

5.
A sensitive and rapid HPLC assay for the determination of the beta-lactam antibiotics ceftazidime and meropenem in serum and bronchial secretions is described. HPLC–integrated sample preparation allows direct injection of serum samples without any pretreatment. Sputum samples need only a simple homogenisation and volume measurement but no liquefying reagents are necessary. The inline extraction technique is realized by automatically switching from the extraction column to the analytical column. After the matrix passed the extraction column, the retained analyte is quantitatively transferred to the analytical column where separation by isocratic HPLC is performed. Ceftazidime and meropenem are detected according to their absorption maxima at 258 and 296 nm, respectively. The detection limit of both antibiotics is estimated to be better than 0.5 μg/ml in serum as well as in sputum samples. The described procedure allows determination of the antibiotics within 30–45 min, thereby facilitating drug monitoring in clinical routine.  相似文献   

6.
We applied micellar electrokinetic capillary chromatography to simultaneous separation and determination of nitrazepam and its major metabolites, 7-aminonitrazepam and 7-acetamidonitrazepam, in spiked urine. Prior to electrophoresis, the three compounds were successfully extracted from the spiked urine with commercial disposable solid-phase cartridges. The optimum running buffer for the separation was prepared by combining 85 parts of 60 mM sodium dodecyl sulphate—6 mM phosphate—borate, adjusted to pH 8.5, with 15 parts of methanol. The separation order, completed within 25 min, was 7-aminonitrazepam > 7-acetamidonitrazepam > nitrazepam, at an applied potential of 20 kV. We obtained reproducible electropherograms in successive repetitions, and few other peaks or interferences appeared in the electropherogram. The detection limits of the three compounds were 50–100 pg (0.1–0.2 μg/ml of analyte in spiked urine), and the recoveries were 78.9–100.8% for 1 μg/ml and 84.1–100.3% for 5 μg/ml. The application of this method to forensic or clinical samples is demonstrated.  相似文献   

7.
The in vitro action of nine antibiotics was tested by the agar streak method against 45 gonococcal strains isolated from penicillin-therapy failures. The penicillin susceptibility range of these strains was 0.003 to 1.32 μg/ml, and the tetracycline susceptibility range was 0.125 to 2.0 μg/ml. Minimal inhibitory concentrations of minocycline and doxycycline paralleled the activity of tetracycline and ranged from 0.125 to 1.0 μg/ml and 0.125 to 2.0 μg/ml, respectively. Rifampicin, with a narrow range of 0.5 to 1.0 μg/ml, inhibited 75% of the strains at 0.5 μg/ml. The range for cephaloridine and cephaloglycine was 0.5 to 20.0 μg/ml, but another cephalosporium derivative, cephalexin, exhibited greater activity in its range of 0.25 to 20.0 μg/ml. A semisynthetic penicillin, carbenicillin, with a range of 0.025 to 0.75 μg/ml, displayed more activity against the lower susceptible penicillin G gonococcal strains.  相似文献   

8.
A rapid high-performance liquid chromatographic method was developed using a short silica column (30 mm×4.6 mm) with an aqueous methanol mobile phase consisting of methanol–water–NH4H2PO4 (94:5.96:0.04) adjusted to a final apparent pH of 5.0 and pumped at a flow-rate of 1 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm, and serum samples were prepared for HPLC analysis by extraction into dichloromethane after basification. Lamotrigine was eluted at 0.96 min. Within-day variation of the method was 4.46% at 0.75 μg/ml and 2.37% at 6.0 μg/ml, and day-to-day variation was 9.10% at 0.75 μg/ml and 7.28% at 6.0 μg/ml.  相似文献   

9.
A high-performance liquid chromatographic method has been developed for the determination of a new cephalosporin antibiotic in plasma, urine and saliva (mixed saliva) using normal-phase technique and an NH2 bonded-phase column. The eluent mixture was a combination of acetonitrile and an aqueous solution of ammonium carbonate. The rapid method involved precipitation of protein from fluids by means of acetonitrile followed by automatic injection of the supernatant. The detection limit was 0.4 μg/ml for plasma, 3 μg/ml for urine and 0.03 μg/ml for saliva using UV detection.  相似文献   

10.
Reported high activity of rifampin for Pseudomonas pseudomallei could not be verified by extensive in vitro tests conducted with 31 recently isolated strains. Minimal inhibitory concentrations of rifampin were 25 μg/ml for three strains and greater than 25 μg/ml for 28 strains. Rifampin had relatively poor in vitro activity when compared with tetracycline drugs and chloramphenicol antibiotics now commonly used for treating melioidosis.  相似文献   

11.
A simple high-performance liquid chromatographic method was developed for the determination of vanillin and its vanillic acid metabolite in human plasma, red blood cells and urine. The mobile phase consisted of aqueous acetic acid (1%, v/v)–acetonitrile (85:15, v/v), pH 2.9 and was used with an octadecylsilane analytical column and ultraviolet absorbance detection. The plasma method demonstrated linearity from 2 to 100 μg/ml and the urine method was linear from 2 to 40 μg/ml. The method had a detection limit of 1 μg/ml for vanillin and vanillic acid using 5 μl of prepared plasma, red blood cells or urine. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of vanillin in patients undergoing treatment for sickle cell anemia.  相似文献   

12.
Acrylamide is a widely used monomer that produces peripheral neuropathy. It is metabolized to the epoxide, glycidamide, which is also considered to be neurotoxic. A new reversed-phase high-performance liquid chromatography (HPLC) method is described that permits simultaneous determination of acrylamide and glycidamide in rat plasma. Samples were deproteinized with acetonitrile and chromatography was performed using isocratic elution and UV absorption detection. The limits of detection for acrylamide and glycidamide were 0.05 and 0.25 μg/ml in plasma, respectively, and recovery of both analytes was greater than 90%. The assay was linear from 0.1 to 100 μg/ml for acrylamide and from 0.5 to 100 μg/ml for glycidamide. Variation over the range of the standard curve was less than 15%. The method was used to determine the concentration–time profiles of acrylamide and glycidamide in the plasma of acrylamide-treated rats.  相似文献   

13.
A method for simultaneous determination of 5-hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide in urine is described. These compounds are metabolites of N-methyl-2-pyrrolidone, a powerful and widely used organic solvent. 5-Hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide were purified from urine by adsorption to a C8 solid-phase extraction column and then elution by ethyl acetate–methanol (80:20). After evaporation, the samples were derivatised at 100°C for 1 h by bis(trimethylsilyl)trifluoroacetamide. Ethyl acetate was then added and the samples were analysed by gas chromatography–mass spectrometry in the electron impact mode. The extraction recovery for 5-hydroxy-N-methylpyrrolidone was about 80% while that for 2-hydroxy-N-methylsuccinimide was about 30%. The intra-day precision for 5-hydroxy-N-methylpyrrolidone was 2–4% and the between-day precision 4–21% (4 and 60 μg/ml). The intra-day precision for 2-hydroxy-N-methylsuccinimide was 4–8% and the between-day precision 6–7% (2 and 20 μg/ml). The detection limit was 0.2 μg/ml urine for both compounds. The method is applicable for analysis of urine samples from workers exposed to N-methyl-2-pyrrolidone.  相似文献   

14.
A procedure for the determination of laudanosine, the central nervous system active metabolite of the neuromuscular blocking drug atracurium, in serum, cerebrospinal fluid and brain is described. The method uses a readily available internal standard, ethavrine, and a single-step protein precipitation with acetonitrile followed by high-performance liquid chromatographic separation with ultraviolet detection. Norlaudanosine, the major metabolite of laudanosine, can also be quantified. Linearity of detector response was obtained between 1 and 25 μg/ml or μg/g and the method is suitable for determining neurotoxic concentrations of laudanosine in experimental animals.  相似文献   

15.
A selective semi-automated solid-phase extraction (SPE) of the non-steroidal anti-inflammatory drugs diclofenac sodium, indomethacin and phenylbutazone from urine prior to high-performance liquid chromatography was investigated. The drugs were recovered from urine buffered at pH 5.0 using C18 Bond-Elut cartridges as solid sorbent material and mixtures of methanol–aqueous buffer or acetonitrile–aqueous buffer as washing and elution solvents. The extracts were chromatographed on a reversed-phase ODS column using 10 mM acetate buffer (pH 4.0)–acetonitrile (58:42, v/v) as the mobile phase, and the effluent from the column was monitored at 210 nm with ultraviolet detection. Absolute recoveries of the anti-inflammatory drugs within the range 0.02–1.0 μg/ml were about 85% for diclofenac and indomethacin, and 50% for phenylbutazone without any interference from endogenous compounds of the urine. The within-day and between-day repeatabilities were in all cases less than 5% and 10%, respectively. Limits of detection were 0.007 μg/ml for diclofenac sodium and indomethacin and 0.035 μg/ml for phenylbutazone, whereas limits of quantitation were 0.02 μg/ml for diclofenac and indomethacin and 0.1 μg/ml for phenylbutazone.  相似文献   

16.
A column-switching high-performance liquid chromatography (HPLC) method is described for the determination of asiaticoside in rat plasma and bile using column-switching and ultraviolet (UV) absorbance detection. Plasma was simply deproteinated with acetonitrile prior to injection and bile was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with two six-port switching valves. Detection of asiaticoside was accurate and repeatable, with a limit of quantification of 0.125 μg/ml in plasma and 1 μg/ml in bile. The calibration curves were linear in a concentration range of 0.125–2.5 μg/ml and 1–20 μg/ml for asiaticoside in rat plasma and bile, respectively. This method has been successfully applied to determine the level of asiaticoside in rat plasma and bile samples from pharmacokinetics and biliary excretion studies.  相似文献   

17.
A chromatographic method, which can quantitate mitomycin C (MMC) along with two antiglaucoma drugs, is described. The separation of MMC, alphagan and timolol was performed on a reversed-phase C18 column with water–methanol–trifluoroacetic acid (65:35:0.01, v/v) as the mobile phase. By monitoring at 360, 248 and 296 nm, the lower limits of detection for MMC, alphagan and timolol are, respectively, 1.0, 2.0 and 5.0 ng (injection amount) at three-time S/N ratio. The dynamic ranges of quantitation for the three drugs are, respectively, 1.0 ng–10.0 μg, 2.0 ng–10.0 μg and 5.0 ng–10.0 μg with linearity being larger than 0.9960. This method was applied to the determination of MMC levels in Tenon’s and trabeculum tissues of 10 glaucoma patients. MMC levels in these tissues, which were obtained from glaucoma filtering surgery, were determined following a multiple extraction with methanol. The recovery of MMC for a two-batch extraction was better than 91.2%. The reproducibility of measurement for the MMC levels in these tissues is 2.5–6.0% RSD for triplicate injections. The intra-day variation of retention times for the MMC peaks was less than 1.6% RSD (n=3). The inter-day variation of retention times for the MMC peaks was less than 4.8% RSD (n=3). MMC was detectable in three trabeculum tissues out of 10 cases (ranging from 0.8 to 25.5 ng/mg specimen), while MMC was detected in nine Tenon’s tissues out of 10 cases (ranging from 0.3 to 21.1 ng/mg specimen). The results obtained show that the method is sensitive and selective for the quantitation of MMC.  相似文献   

18.
A reversed-phase high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat hepatic microsome has been developed. Racemic atenolol was extracted from alkalinized rat hepatic microsome by ethyl acetate. The organic layer was dried with anhydrous sodium sulfate and evaporated using a gentle stream of air. Atenolol racemic compound was derivatized with 2,3,4,6-tetra-O-acetyl-β- -glycopyranosyl isothiocyanate at 35°C for 30 min to form diastereomers. After removal of excess solvent, the diastereomers were dissolved in phosphate buffer (pH 4.6)–acetonitrile (50:30). The diastereomers were separated on a Shimadzu CLC-C18 column (10 μm particle size, 10 cm×0.46 cm I.D.) with a mobile phase of phosphate buffer–methanol–acetonitrile (50:20:30, v/v) at a flow-rate of 0.5 ml/min. A UV–VIS detector was operated at 254 nm. For each enantiomer, the limit of detection was 0.055 μg/ml (signal-to-noise ratio 3) and the limit of quantification (signal-to-noise ratio 10) was 0.145 μg/ml (RSD <10%). In the range 0.145–20 μg/ml, intra-day coefficients of variation were 1.0–7.0% and inter-day coefficients of variation were 0.4–16.5% for each enantiomer. The assay was applied to determine the concentrations of atenolol enantiomers in rat hepatic microsome as a function of time after incubation of racemic atenolol.  相似文献   

19.
A rapid and sensitive method was developed for the simultaneous determination of the new doxorubicin glucuronide prodrug HMR 1826, the parent drug doxorubicin and its metabolites in human lung tissue samples. Homogenization of frozen tissue samples with the micro-dismembrator was followed by a silver nitrate precipitation step. By removing the exceeding silver ions with sodium chloride further purification steps could be omitted. Compounds were separated by isocratic high-performance liquid chromatography on a LiChrospher 100 RP18 column and a mobile phase consisting of citric acid buffer–acetonitrile–methanol–tetrahydrofuran within 30 min and quantified with fluorescence detection. The method showed good recoveries for all compounds (86–99%) and a linear calibration range of 20 ng/g–80 μg/g for doxorubicin and 1–600 μg/g for HMR 1826.  相似文献   

20.
High-performance liquid chromatography with electrospray mass spectrometry (LC–MS) was used for analysis of the drug flecainide in serum. The clean-up was performed by solid-phase extraction, and an aromatic ring positional isomer was used as internal standard. Results from method validation on spiked serum samples showed excellent reproducibility; intra- and inter-assay variations (C.V.% and %Bias) were less than 6% within the therapeutic concentration range of the drug (0.2–1.0 μg/ml). Linearity was demonstrated from 0.05 to 2.0 μg/ml. The limit of detection and quantification was 0.025 and 0.05 μg/ml, respectively. Due to the high selectivity of the mass spectrometric detection, no interferences were observed. Results from clinical samples (n=18) from patients in treatment with Tambocor (flecainide acetate) showed excellent correlation with parallel data obtained from a method based on high-performance liquid chromatography (HPLC) with fluorescence detection after liquid/liquid extraction. The chromatographic separation of flecainide and internal standard was improved compared to earlier HPLC methods. The methodology is simple, accurate and requires only 0.25 ml of sample. It is a well suited method for routine therapeutic drug monitoring in a hospital or clinical chemistry laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号