首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fusion is a key step in the virus mediated cell fusion. The vesicular dispersion serves as a model system to study the membrane fusion. We employed dynamic and static light scattering to study the fusion of phosphatidylcholine vesicles in the presence of model fusion peptide fragments from the hemagglutinin HA2 protein. The fusion-induced aggregation under the present experimental setup exhibited strong pH dependence, similar to the parental viral protein. Replacement of the glycine residue at the extreme amino terminus by glutamic acid (G1E) abolished fusion activity. The average molecular mass and diameter of vesicular dispersion obtained from static and dynamic light scattering measurements respectively at neutral and acidic pH showed about three fold increase in acidic solution containing wild type fusion peptide. The light scattering data are consistent with lipid mixing results. The present work demonstrates the utility of light scattering as a facile means to monitor the fusion process.  相似文献   

2.
M Rafalski  J D Lear  W F DeGrado 《Biochemistry》1990,29(34):7917-7922
Peptides representing the N-terminal 23 residues of the surface protein gp41 of LAV1a and LAVmal strains of the human immunodeficiency virus were synthesized and their interactions with phospholipid vesicles studied. The peptides are surface-active and penetrate lipid monolayers composed of negatively charged but not neutral lipids. Similarly, the peptides induce lipid mixing and solute (6-carboxyfluorescein) leakage of negatively charged, but not neutral, vesicles. Circular dichroism and infrared spectroscopy show that at low peptide:lipid ratios (approximately 1:200), the peptides bind to negatively charged vesicles as alpha-helices. At higher peptide:lipid ratios (1:30), a beta conformation is observed for the LAV1a peptide, accompanied by a large increase in light scattering. The LAVmal peptide showed less beta-structure and induced less light scattering. With neutral vesicles, only the beta conformation and a peptide:lipid ratio-dependent increase in vesicle suspension light scattering were observed for both peptides. We hypothesize that the inserted alpha-helical form causes vesicle membrane disruption whereas the surface-bound beta form induces aggregation.  相似文献   

3.
Chakraborty H  Lentz BR 《Biochemistry》2012,51(5):1005-1008
Circular dichroism (CD) spectroscopy is an important technique in structural biology for examining folding and conformational changes of proteins in solution. However, the use of CD spectroscopy in a membrane medium (and also in a nonhomogeneous medium) is limited by (i) high light scattering and (ii) differential scattering of incident left and right circularly polarized light, especially at shorter wavelengths (<200 nm). We report a novel methodology for estimating the distortion of CD spectra caused by light scattering for membrane-bound peptides and proteins. The method is applied to three proteins with very different secondary structures to illustrate the limits of its capabilities when calibrated with a simple soluble peptide ([Ac]ANLKALEAQKQKEQRQAAEELANAK[OH], standard peptide) with a balanced secondary structure. The method with this calibration standard was quite successful in estimating α-helix but more limited when it comes to proteins with very high β-sheet or β-turn content.  相似文献   

4.
Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements.  相似文献   

5.
The bovine eye lens protein, alpha L crystallin, has been studied with photon correlation spectroscopy and statical light scattering in the concentration range up to 200 g/l in different solvent conditions. At higher concentration (c greater than 70 g/l) the scattering behavior is quite complicated, which results in nonexponential correlation functions. Three methods have been used for the analysis of these correlation functions, namely, cumulant analysis, sum of two exponentials analysis, and exponential sampling method. These methods resulted in very similar results. The highly concentrated solutions contain two scattering entities: the single alpha L crystallin and a rather heterogeneous population of large clusters. The statical light-scattering experiments can be interpreted in the same way and gave consistent results for the dimensions of the large scattering units. The formation of these clusters, which are strong light scatterers, is superimposed on an increasing degree of correlation between the bulk of the alpha L-crystallins, resulting in a net decrease of light scattering as a function of concentration.  相似文献   

6.
The dynamics of thrombin-induced fibrin gel formation was investigated by means of static and dynamic light scattering. The decay time distribution function, obtained by the dynamic light scattering, clearly revealed a stepwise gelation process: the formation of fibrin and protofibril from fibrinogen followed by the lateral aggregation of protofibrils to form fibrin fibers and the formation of a three-dimensional network consisting of fibers. This conversion process was correlated with the angular dependence of the scattered light intensity (static light scattering). The correlation function of dynamic light scattering was analyzed in terms of sol-gel transition and gel structure. The correlation function showed a stretched exponential type behavior before the sol to gel transition point, and it showed a power law behavior at the gelation point.  相似文献   

7.
Investigations were performed in order to find out whether the glucose concentration in liquids can be determined by means of light scattering. Both static light scattering and photon correlation spectroscopy (PCS) were used. Neither of them revealed a possibility of determination of glucose concentration in a pure glucose solution. But for glucose-protein-solutions a clear correlation between intensity of light scattering and glucose concentration was detected due to glycosylation of proteins. In blood serum it is solely possible to measure non-enzymatic reaction products between glucose and proteins and to determine the influence of Amadori products on protein structure. Therefore not even indirect conclusions on the present glucose concentration are possible.  相似文献   

8.
Slit scanning flow cytometry has been applied to the analysis of the cell cycle and cell-cycle-dependent events in Saccharomyces cerevisiae, yielding information on the low-resolution spatial distribution of cellular components in single cells of unperturbed cell populations. Because this process is rapid, large numbers of cells can be analyzed to give distributions of parameters in a given population. To study asymmetric cell division and cell cycle progression, forward-angle light scattering (FALS) signals together with fluorescence signals from acriflavine-stained nuclei have been measured in cells from exponentially growing yeast populations. An algorithm has been developed that assigns the position of the bud neck in the FALS signals so that both FALS and DNA signals can be analyzed in terms of the contributions from the mother cell and the cell bud. The data indicate that mother cell FALS, on average, remains constant while FALS due to the cell bud increases as a cell progresses through the cell cycle. By identifying mitotic cells and measuring their properties, we have found that the coefficient of variation for the distribution of FALS is smallest within the dividing cell population and largest within the newborn cell population, in accordance with the critical size control mechanism of yeast cell growth. The use of this experimental approach to provide data for statistical population models is discussed.  相似文献   

9.
The theoretical basis of an optical microscope technique to image dynamically scattered light fluctuation decay rates (dynamic light scattering microscopy) is developed. It is shown that relative motions between scattering centers even smaller than the optical resolution of the microscope are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The timescale and time dependence for the temporal autocorrelation function of these intensity fluctuations is derived. The spatial correlation distance, which reports the average distance between constructive and destructive interference in the image plane, is calculated and compared with the pixel size, and the distance dependence of the spatial correlation function is derived. The accompanying article in this issue describes an experimental implementation of dynamic light scattering microscopy.  相似文献   

10.
Nonviral gene delivery vectors now show good therapeutic potential: however, detailed characterization of the composition and macromolecular organization of such particles remains a challenge. This paper describes experiments to elucidate the structure of a ternary, targeted, lipopolyplex synthetic vector, the LID complex. This consists of a lipid component, Lipofectin (L) (1:1 DOTMA:DOPE), plasmid DNA (D), and a dual-function, cationic peptide component (I) containing DNA condensation and integrin-targeting sequences. Fluorophore-labeled lipid, peptide, and DNA components were used to formulate the vector, and the stoichiometry of the particles was established by fluorescence correlation spectroscopy (FCS). The size of the complex was measured by FCS, and the sizes of LID, L, LD, and ID complexes were measured by dynamic light scattering (DLS). Fluorescence quenching experiments and freeze-fracture electron microscopy were then used to demonstrate the arrangement of the lipid, peptide, and DNA components within the complex. These experiments showed that the cationic portion of the peptide, I, interacts with the plasmid DNA, resulting in a tightly condensed DNA-peptide inner core; this is surrounded by a disordered lipid layer, from which the integrin-targeting sequence of the peptide partially protrudes.  相似文献   

11.
The amyloid Abeta(10-35)-NH2 peptide is simulated in an aqueous environment on the nanosecond time scale. One focus of the study is on the validation of the computational model through a direct comparison of simulated statistical averages with experimental observations of the peptide's structure and dynamics. These measures include (1) nuclear magnetic resonance spectroscopy-derived amide bond order parameters and temperature-dependent H(alpha) proton chemical shifts, (2) the peptide's radius of gyration and end-to-end distance, (3) the rates of peptide self-diffusion in water, and (4) the peptide's hydrodynamic radius as measured by quasielastic light scattering experiments. A second focus of the study is the identification of key intrapeptide interactions that stabilize the central structural motif of the peptide. Particular attention is paid to the structure and fluctuation of the central LVFFA hydrophobic cluster (17-21) region and the VGSN turn (24-27) region. There is a strong correlation between preservation of the structure of these elements and interactions between the cluster and turn regions in imposing structure on the peptide monomer. The specific role of these interactions in relation to proposed mechanisms of amyloidosis is discussed.  相似文献   

12.
Miao J  Cui L 《Nature protocols》2011,6(2):140-146
Malaria research often requires isolation of individually infected red blood cells (RBCs) or of a homogenous parasite population derived from a single parasite (clone). Traditionally, isolation of individual, parasitized RBCs or parasite cloning is achieved by limiting dilution or micromanipulation. This protocol describes a method for more efficient cloning of the malaria parasite; the method uses a cell sorter to rapidly isolate Plasmodium falciparum-infected RBCs singly. By gating the parameters of forward-angle light scatter and side-angle light scatter in a cell sorter, singly infected RBCs can be isolated and automatically deposited into a 96-well culture plate within 1 min. Including a Percoll purification step; the entire procedure to seed a 96-well plate with singly infected RBCs can take <40 min. This highly efficient single-cell sorting protocol should be useful for cloning of both laboratory parasite populations from genetic manipulation experiments and clinical samples.  相似文献   

13.
An unusual class of nanoscopic, ring-shaped, single-walled biopolymers arises when alphabeta-tubulin is mixed with certain small peptides obtained from various marine organisms and cyanobacteria. The single-ring structures, whose mean molecular weight depends on the specific peptide added to the reaction mixture, usually have sharp mass distributions corresponding, e.g., to rings containing eight tubulin dimers (when the added peptide is cryptophycin) and 14 dimers (e.g., with dolastatin). Although the ring-forming peptides have been shown to possess antimitotic properties when tested with cultured eukaryotic cells (and thus have generated considerable interest as possible agents to be used in the treatment of cancer), it is not our intention to extensively discuss the potential pharmacological properties of the peptides. Rather, we will review the polymeric structures that form and illustrate how certain physical techniques can be used to characterize their properties and interactions. The nanoscopic size and particular geometry of the individual rings make them appropriate targets for scattering and hydrodynamic techniques that provide details about their structure in solution, but it is necessary to relate measured data to postulated structures by nontrivial, albeit straight-forward, mathematical, and computational means. We will discuss how this is done when one uses such methods as small angle neutron scattering, dynamic light scattering, fluorescence correlation spectroscopy, and sedimentation velocity measurements. Moreover, we show that, by using several techniques, one can eliminate degeneracy to provide better discrimination between model structures.  相似文献   

14.
Peptides corresponding to the amino terminal region of pardaxin from Pardachirus pavoninus (Gly-Phe-Phe-Ala-Leu-Ile-Pro-Lys-Ile-Ile-Ser-Ser-Pro-Leu-Phe) have been synthesized and their interaction with model membranes of phosphatidyl choline and serine studied by 90 degrees C light scattering and fluorescence spectroscopy. The amino terminal 8-residue peptide and the protected 15-residue peptide cause only aggregation of lipid vesicles. The deprotected 15-residue peptide has the ability to cause aggregation and release of entrapped carboxyfluorescein with both phosphatidyl choline and serine lipid vesicles, like pardaxin. The membrane-perturbing ability of the amino terminal 15-residue peptide can be attributed to its ability to adopt an alpha-helical conformation which is amphiphilic in nature in a hydrophobic environment.  相似文献   

15.
Calf brain microtubule protein was assembled in vitro to form dilute solutions of microtubules (240 A diameter) having lengths greater than 1 micrometer. The microtubule solutions were examined by dynamic laser light scattering techniques. The angular dependence of the correlation function leads to the conclusion that the correlation function is measuring the translational diffusion constant of the particles. The length dependence of the correlation function, however, shows that the translational diffusion constant is not being measured and that the diffusion constant for the microtubules cannot be straightforwardly determined. These results suggest that a collective property of the rods is being measured by the laser light scattering. Although specific microtubule-microtubule interactions are a possible explanation for the observed results, we present arguments that suggest that the solution can be adequately modeled as a network of entangled polymers.  相似文献   

16.
Peptide-conjugated gold nanorods for nuclear targeting   总被引:2,自引:0,他引:2  
Resonant electron oscillations on the surface of noble metal nanoparticles (Au, Ag, Cu) create the surface plasmon resonance (SPR) that greatly enhances the absorption and Rayleigh (Mie) scattering of light by these particles. By adjusting the size and shape of the particles from spheres to rods, the SPR absorption and scattering can be tuned from the visible to the near-infrared region (NIR) where biologic tissues are relatively transparent. Further, gold nanorods greatly enhance surface Raman scattering of adsorbed molecules. These unique properties make gold nanorods especially attractive as optical sensors for biological and medical applications. In the present work, gold nanorods are covalently conjugated with a nuclear localization signal peptide through a thioalkyl-triazole linker and incubated with an immortalized benign epithelial cell line and an oral cancer cell line. Dark field light SPR scattering images demonstrate that nanorods are located in both the cytoplasm and nucleus of both cell lines. Single cell micro-Raman spectra reveal enhanced Raman bands of the peptide as well as molecules in the cytoplasm and the nucleus. Further, the Raman spectra reveal a difference between benign and cancer cell lines. This work represents an important step toward both imaging and Raman-based intracellular biosensing with covalently linked ligand-nanorod probes.  相似文献   

17.
Flow cytometry has been used to study the contents of macromolecular compounds and light-scatter parameters in batch and continuous cultures of a recombinant Escherichia coli strain that forms protein inclusion bodies. Changes in relative DNA and RNA contents and cell mass as estimated by forward-angle light scatter were detected and tightly correlated in batch culture. In addition, heterogeneity of wide-angle light scatter (WALS), which we related to the presence of cellular inclusion bodies, was observed. In contrast, the relative RNA content and cell mass did not change during continuous culture, and homogeneity of WALS was found. In addition, unexpected changes in relative DNA content were observed after 67 h of culture, indicating a change in bacterial physiology.  相似文献   

18.
Aggregation phenomena of tannin with bovine serum albumin were investigated by light scattering techniques including photon correlation spectroscopy and Rayleigh scattering. Tannin and albumin formed particles with diameters less than 1 microm at neutral pH. As revealed by this study, light scattering methods are useful in investigating aggregation phenomena of biomolecules and in directly quantifying tannin content.  相似文献   

19.
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a basic helix-loop-helix (bHLH) protein that contains a Per-Arnt-Sim (PAS) domain. ARNT heterodimerizes in vivo with other bHLH PAS proteins to regulate a number of cellular activities, but a physiological role for ARNT homodimers has not yet been established. Moreover, no rigorous studies have been done to characterize the biochemical properties of the bHLH domain of ARNT that would address this issue. To begin this characterization, we chemically synthesized a 56-residue peptide encompassing the bHLH domain of ARNT (residues 90-145). In the absence of DNA, the ARNT-bHLH peptide can form homodimers in lower ionic strength, as evidenced by dynamic light scattering analysis, and can bind E-box DNA (CACGTG) with high specificity and affinity, as determined by fluorescence anisotropy. Dimers and tetramers of ARNT-bHLH are observed bound to DNA in equilibrium sedimentation and dynamic light scattering experiments. The homodimeric peptide also undergoes a coil-to-helix transition upon E-box DNA binding. Peptide oligomerization and DNA affinity are strongly influenced by ionic strength. These biochemical and biophysical studies on the ARNT-bHLH reveal its inherent ability to form homodimers at concentrations supporting a physiological function and underscore the significant biochemical differences among the bHLH superfamily.  相似文献   

20.
Small-angle X-ray and neutron scattering data were used to study the solution structure of calmodulin complexed with a synthetic peptide corresponding to residues 577-603 of rabbit skeletal muscle myosin light chain kinase. The X-ray data indicate that, in the presence of Ca2+, the calmodulin-peptide complex has a structure that is considerably more compact than uncomplexed calmodulin. The radius of gyration, Rg, for the complex is approximately 20% smaller than that of uncomplexed Ca2+.calmodulin (16 vs 21 A), and the maximum dimension, dmax, for the complex is also about 20% smaller (49 vs 67 A). The peptide-induced conformational rearrangement of calmodulin is [Ca2+] dependent. The length distribution function for the complex is more symmetric than that for uncomplexed Ca2+.calmodulin, indicating that more of the mass is distributed toward the center of mass for the complex, compared with the dumbell-shaped Ca2+.calmodulin. The solvent contrast dependence of Rg for neutron scattering indicates that the peptide is located more toward the center of the complex, while the calmodulin is located more peripherally, and that the centers of mass of the calmodulin and the peptide are not coincident. The scattering data support the hypothesis that the interconnecting helix region observed in the crystal structure for calmodulin is quite flexible in solution, allowing the two lobes of calmodulin to form close contacts on binding the peptide. This flexibility of the central helix may play a critical role in activating target enzymes such as myosin light chain kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号