首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinases and cerebral ischemia   总被引:18,自引:0,他引:18  
Mitogen-activated protein kinases (MAPKs) have crucial roles in signal transduction from the cell surface to the nucleus and regulate cell death and survival. Recent papers support the hypothesis that neuronal apoptosis and cerebral ischemia induce the robust activation of MAPK cascades. Although extracellular signal-regulated kinases pathways promote cell survival and proliferation, and c-Jun N-terminal protein kinases/p38 pathways induce apoptosis in general, the roles of MAPK cascades in neuronal death and survival seem to be complicated and altered by the type of cells and the magnitude and timing of insults. Some specific inhibitors of MAPK cascades provide important information in clarifying the roles of each molecule in neuronal death and survival, but the results are still controversial. Further studies are necessary to elucidate the activated signal transduction upstream and downstream of the cascades in cerebral ischemia, and to define the crosstalk between the cascades and other signaling pathways, before MAPK cascades can be candidate molecules in the treatment of cerebral ischemia.  相似文献   

2.
Mitogen-activated protein kinases in cell-cycle control   总被引:4,自引:0,他引:4  
The mitogen-activated protein kinase (MAPK) family of kinases connects extracellular stimuli with diverse cellular responses ranging from activation or suppression of gene expression to the regulation of cell mortality, growth, and differentiation. The MAPK family has been studied extensively; however, the role of these kinases in cell growth and cell-cycle control has become increasingly complex. Patterns have begun to emerge from these studies that show the functions of MAPK subfamilies at different stages of the cell cycle. Their patterns of subcellular localization and movement during the cell cycle are subfamily-specific and have raised many questions about possible cell-cycle functions that have yet to be demonstrated. This article will compare and contrast our current understanding of the functions and localization patterns of the MAPK subfamilies (ERK, BMK, p38, and JNK) in cell-cycle control.  相似文献   

3.
参与细胞凋亡的丝裂原活化蛋白激酶及其作用机制   总被引:4,自引:0,他引:4  
Zheng M  Han QD 《生理科学进展》2000,31(2):157-160
丝裂原活化蛋白激酶家族(MAPKs)参与细胞调亡的信号转导过程。在多数细胞中,JNK/SAPKs和p38诱导细胞调亡,ERK促进细胞增殖;但在另一些细胞中则情况相反。MAPKs途径与死亡受体途径之间存在一定的联系,它们间的交互作用尚待一步研究。  相似文献   

4.
Mitogen-activated protein kinases in synaptic plasticity and memory   总被引:38,自引:0,他引:38  
This review highlights five areas of recent discovery concerning the role of extracellular-signal regulated kinases (ERKs) in the hippocampus. First, ERKs have recently been directly implicated in human learning through studies of a human mental retardation syndrome. Second, new models are being formulated for how ERKs contribute to molecular information processing in dendrites. Third, a role of ERKs in stabilizing structural changes in dendritic spines has been defined. Fourth, a crucial role for ERKs in regulating local dendritic protein synthesis is emerging. Fifth, the importance of ERK interactions with scaffolding and structural proteins at the synapse is increasingly apparent. These topics are discussed within the context of an emerging role for ERKs in a wide variety of forms of synaptic plasticity and memory formation in the behaving animal.  相似文献   

5.
6.
7.
Diabetes mellitus (DM) causes myocardial remodeling on the subcellular level and alterations in the function of the cell membranes ion transport systems resulting in contractile dysfunction. The present study was aimed to investigate the expression and activation of mitogen-activated protein kinases (MAPKs) and their possible role in the acute diabetic rat hearts. Rats were injected with single dose of streptozotocin (45 mg/kg, i.v.), and after 1 week the disease was manifested by hyperglycemia and cardiac dysfunction. The Langendorff-perfused hearts were subjected to ischemia (5 or 30 min occlusion of LAD coronary artery). The protein pattern in cytosolic fraction of the heart tissue was determined after electrophoretic separation. The levels and activation of MAPKs were determined by Western blot analysis using specific antibodies. No differences between the diabetics and controls in the level of ERKs were found at baseline. However, in DM samples ERKs phosphorylation was markedly increased, and further changes occurred during ischemia. Also content of phoshorylated c-Raf kinase (an upstream activator of ERKs) was slightly increased at baseline conditions in the diabetic samples. In contrast, no significant changes in the contents and phosphorylation of p38-MAPK were observed at baseline. But some differences in the p38-MAPK phosphorylation were found during ischemia.The results show that differential pattern of protein kinase cascades activation in the diabetic hearts might be account for the modulation of their response to ischemia.  相似文献   

8.
Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.  相似文献   

9.
10.
11.
12.
Mitogen-activated protein kinases (MAPKs) are evolutionary conserved enzymes connecting cell-surface receptors to critical regulatory targets within cells. The three major MAPK cascades are known, the extracellular signal-regulated protein kinase (ERK) cascade, c-Jun amino-terminal protein kinase/stress-activated protein kinase (JNK/SAPK) cascade and p38-MAPK cascade. This paper is focused on characterization of these MAPK cascades in terms of their distribution and biological role in some pathological processes (apoptosis, hypertrophy) with a special orientation on the role of MAPKs in cardiovascular system during ischemia/reperfusion.  相似文献   

13.
Mitogen-activated protein (MAP) kinases bind tightly to many of their physiologically relevant substrates. We have identified a new subfamily of murine serine/threonine kinases, whose members, MAP kinase-interacting kinase 1 (Mnk1) and Mnk2, bind tightly to the growth factor-regulated MAP kinases, Erk1 and Erk2. MNK1, but not Mnk2, also binds strongly to the stress-activated kinase, p38. MNK1 complexes more strongly with inactive than active Erk, implying that Mnk and Erk may dissociate after mitogen stimulation. Erk and p38 phosphorylate MNK1 and Mnk2, which stimulates their in vitro kinase activity toward a substrate, eukaryotic initiation factor-4E (eIF-4E). Initiation factor eIF-4E is a regulatory phosphoprotein whose phosphorylation is increased by insulin in an Erk-dependent manner. In vitro, MNK1 rapidly phosphorylates eIF-4E at the physiologically relevant site, Ser209. In cells, Mnk1 is post-translationally modified and enzymatically activated in response to treatment with either peptide growth factors, phorbol esters, anisomycin or UV. Mitogen- and stress-mediated MNK1 activation is blocked by inhibitors of MAP kinase kinase 1 (Mkk1) and p38, demonstrating that Mnk1 is downstream of multiple MAP kinases. MNK1 may define a convergence point between the growth factor-activated and one of the stress-activated protein kinase cascades and is a candidate to phosphorylate eIF-4E in cells.  相似文献   

14.
Mitogen-activated protein kinases: versatile transducers for cell signaling.   总被引:31,自引:0,他引:31  
Mitogen-activated protein (MAP) kinases are proline-directed serine/threonine protein kinases that are activated via phosphorylation of their own tyrosine residues. Highly conserved during eukaryotic evolution, they serve as common signaling components in distinct transduction pathways initiated by many stimuli. They have been implicated in the control of a broad spectrum of cellular events but are particularly known for their possible roles in cell cycle progression and the control of meiosis.  相似文献   

15.
BackgroundOsmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes.Scope of reviewThe present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs.Major conclusionsMAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation.General significanceMAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.  相似文献   

16.
Eukaryotic cells respond to different external stimuli by activation of mechanisms of cell signaling. One of the major systems participating in the transduction of signal from the cell membrane to nuclear and other intracellular targets is the highly conserved mitogen-activated protein kinase (MAPK) superfamily. The members of MAPK family are involved in the regulation of a large variety of cellular processes such as cell growth, differentiation, development, cell cycle, death and survival. Several MAPK subfamilies, each with apparently unique signaling pathway, have been identified in the mammalian myocardium. These cascades differ in their upstream activation sequence and in downstream substrate specifity. Each pathway follows the same conserved three-kinase module consisting of MAPK, MAPK kinase (MAPKK, MKK or MEK), and MAPK kinase kinase (MAPKKK, MEKK). The major groups of MAPKs found in cardiac tissue include the extracellular signal-regulated kinases (ERKs), the stress-activated/c-Jun NH2-terminal kinases (SAPK/JNKs), p38-MAPK, and ERK5/big MAPK 1 (BMK1). The ERKs are strongly activated by mitogenic and growth factors and by physical stress, whereas SAPK/JNKs and p38-MAPK can be activated by various cell stresses, such as hyperosmotic shock, metabolic stress or protein synthesis inhibitors, UV radiation, heat shock, cytokines, and ischemia. Activation of MAPKs family plays a key role in the pathogenesis of various processes in the heart, e.g. myocardial hypertrophy and its transition to heart failure, in ischemic and reperfusion injury, as well in the cardioprotection conferred by ischemia- or pharmacologically-induced preconditioning. The following approaches are currently utilized to elucidate the role of MAPKs in the myocardium: (i) studies of the effects of myocardial processes on the activity of these kinases; (ii) pharmacological modulations of MAPKs activity and evaluation of their impact on the (patho)physiological processes in the heart; (iii) gene targeting or expression of constitutively active and dominant-negative forms of enzymes (adenovirus-mediated gene transfer).This review is focused on the regulatory role of MAPKs in the myocardium, with particular regard to their involvement in pathophysiological processes, such as myocardial hypertrophy and heart failure, ischemia/reperfusion injury, as well as in the mechanisms of cardioprotection. In addition, it summarizes current information on pharmacological modulations of MAPKs activity and their impact on the cardiac response to pathophysiological processes.  相似文献   

17.
Mitogen-activated protein kinase (MAPK) pathways transduce signals from a diverse array of extracellular stimuli. The three primary MAPK-signaling pathways are the extracellular regulated kinases (ERK1/2), p38 MAPK, and c-Jun NH(2)-terminal kinase (JNK). Previous research in our laboratory has shown that COX-2-elaborated prostanoids participate in recovery of mucosal barrier function in ischemic-injured porcine ileum. Because COX-2 expression is regulated in part by MAPKs, we postulated that MAPK pathways would play an integral role in recovery of injured mucosa. Porcine mucosa was subjected to 45 min of ischemia, after which tissues were mounted in Ussing chambers, and transepithelial electrical resistance (TER) was monitored as an index of recovery of barrier function. Treatment of tissues with the p38 MAPK inhibitor SB-203580 (0.1 mM) or the ERK1/2 inhibitor PD-98059 (0.1 mM) abolished recovery. Western blot analysis revealed that SB-203580 inhibited upregulation of COX-2 that was observed in untreated ischemic-injured mucosa, whereas PD-98059 had no effect on COX-2 expression. Inhibition of TER recovery by SB-203580 or PD-98059 was overcome by administration of exogenous prostaglandin E(2) (1 microM). The JNK inhibitor SP-600125 (0.1 mM) significantly increased TER and resulted in COX-2 upregulation. COX-2 expression appears to be positively and negatively regulated by the p38 MAPK and the JNK pathways, respectively. Alternatively, ERK1/2 appear to be involved in COX-2-independent reparative events that remain to be defined.  相似文献   

18.
Mitogen-activated protein kinases (MAPKs) are a group of serine/threonine kinases which are activated in response to a diverse array of extracellular stimuli and mediate signal transduction from the cell surface to the nucleus. It has been demonstrated that MAPKs are activated by external stimuli including chemotherapeutic agents, growth factors and reproductive hormones in ovarian surface epithelial cells. Thus, the MAPK signaling pathway may play an important role in the regulation of proliferation, survival and apoptosis in response to these external stimuli in ovarian cancer. In this article, an activation of the MAPK signaling cascade by several key reproductive hormones and growth factors in epithelial ovarian cancer is reviewed.  相似文献   

19.
20.
Peroxynitrite, formed by the reaction of nitric oxide (NO. ) with superoxide anions (O(2)(-).), may play a role in the pathophysiology of inflammation. The effects of 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, on the human bronchial epithelial cell line BEAS-2B, were examined. SIN-1 exposure resulted in cell death in a time- and dose-dependent manner. Depletion of intracellular glutathione increased the vulnerability of the cells. Pretreatment with Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP) or hydroxocobalamin (HC), O(2)(-). and NO. scavengers, respectively, reduced significantly SIN-1-induced cell death (18.66 +/- 3.57 vs. 77.01 +/- 14.07 or 82.20 +/- 9.64, % cell viability SIN-1 vs. MnTMPyP or HC). Moreover, the mitogen-activated protein kinases (MAPK) p44/42 (ERK), p38, and p54/46 (JNK) were also activated in a time- and concentration-dependent manner. PD-98059 and SB-239063, specific inhibitors of ERK and p38 MAPK pathways, failed to protect cells against 1 mM SIN-1. However, PD-98059 partially inhibited (60% cell survival) SIN-1 effects at < or =0.25 mM, and this was increased with the inclusion of SB-239063. Therefore, MAPKs may mediate signal transduction pathways induced by peroxynitrite in lung epithelial cells leading to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号