首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DS-Nh (DS Non-hair) mouse is a spontaneous hairless mutant of the DS mouse. The inheritance mode of the Nh mutation is autosomal dominant, and the Nh locus is mapped to Chromosome 11. The roles of the Nh mutation in spontaneous dermatitis and IgE hyperproduction were studied using an Nh congenic strain with a genetic background from the BALB/c mouse. In contrast to DS-Nh (Nh/+) mice, BALB/c-Nh (Nh/+) mice under conventional conditions showed a marked increase in serum IgE, without the development of dermatitis. These results suggest that IgE hyperproduction is regulated by the Nh mutation, while other genetic factor(s) are also involved in the development of dermatitis.  相似文献   

2.
Expression of prostaglandin E(2) receptor subtypes in mouse hair follicles.   总被引:4,自引:0,他引:4  
We investigated the mRNA distribution of the prostaglandin (PG) E(2) receptor subtypes and cyclooxygenases (COXs) in hair follicles of the mouse dorsal skin. In the 3-week hair follicles, which are in the anagen phase, EP3 and EP4 mRNA were expressed in the dermal papilla cells and the outer root sheath cells located in the hair bulb region, respectively. In the 8-week hair follicles, which are in the telogen phase, the signals for both EP3 and EP4 mRNAs had disappeared. To study the hair cycle-dependent expression of mRNAs for the EPs and COXs, an area of dorsal hair was depilated from 8-week-old mice. On days 8 and 12 after depilation, EP3 and EP4 mRNA were reexpressed in the dermal papilla cells and the outer root sheath cells, and the induction of COX-2 mRNA was also observed in the outer root sheath cells, the upper area of EP4 expression site. These results suggest that EP3 and EP4 receptors may involve in the development and regrowth of the hair follicles.  相似文献   

3.
Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo.   总被引:14,自引:0,他引:14  
The regression phase of the hair cycle (catagen) is an apoptosis-driven process accompanied by terminal differentiation, proteolysis, and matrix remodeling. As an inhibitor of keratinocyte proliferation and inductor of keratinocyte apoptosis, transforming growth factor beta1 (TGF-beta1) has been proposed to play an important role in catagen regulation. This is suggested, for example, by maximal expression of TGF-beta1 and its receptors during late anagen and the onset of catagen of the hair cycle. We examined the potential involvement of TGF-beta1 in catagen control. We compared the first spontaneous entry of hair follicles into catagen between TGF-beta1 null mice and age-matched wild-type littermates, and assessed the effects of TGF-beta1 injection on murine anagen hair follicles in vivo. At day 18 p.p., hair follicles in TGF-beta1 -/- mice were still in early catagen, whereas hair follicles of +/+ littermates had already entered the subsequent resting phase (telogen). TGF-beta1-/- mice displayed more Ki-67-positive cells and fewer apoptotic cells than comparable catagen follicles from +/+ mice. In contrast, injection of TGF-beta1 into the back skin of mice induced premature catagen development. In addition, the number of proliferating follicle keratinocytes was reduced and the number of TUNEL + cells was increased in the TGF-beta1-treated mice compared to controls. Double visualization of TGF-beta type II receptor (TGFRII) and TUNEL reactivity revealed colocalization of apoptotic nuclei and TGFRII in catagen follicles. These data strongly support that TGF-beta1 ranks among the elusive endogenous regulators of catagen induction in vivo, possibly via the inhibition of keratinocyte proliferation and induction of apoptosis. Thus, TGF-betaRII agonists and antagonists may provide useful therapeutic tools for human hair growth disorders based on premature or retarded catagen development (effluvium, alopecia, hirsutism).  相似文献   

4.
The interactions between mouse angora-Y (Fgf5go-Y) and hairless (hr) genes have been studied. Homozygous mutant gene Fgf5go-Y increases hair length starting on day 14 after birth. We obtained mice with genotypes +/+ hr/hr F2, +/Fgf5go-Y hr/hr and Fgf5go-Y/Fgf5go-Y hr/hr. Both +/Fgf5go-Y hr/hr and +/+ hr/hr mice began to loose hair from their heads on day 14. This further extended on the whole body. On day 21 the mice were completely deprived of hair. Therefore a single dose of gene Fgf5go-Y does not affect alopecia mice homozygous for hr. However in double homozygotes Fgf5go-Y/Fgf5gO-hr/hr alopecia started 4 days later, namely on day 18. It usually finished 10-12 days after detection of first bald patches. On days 28-30 double homozygotes have lost all the hair. Hair loss in double homozygous mice was 1,5-fold slower than in +/+ hr/hr mice. This resulted from a significant extension of anagen phase induced by a mutant homozygous gene Fgf5go-Y in morphogenesis of the hair follicle. In contrast, hr gene was expressed only at the transmission phase from anagen to catagen. Our data shows that the angora gene is a modifier of the hairless gene and this results in a strong repression of alopecia progression in double homozygous mice compared to +/+ hr/hr animals.  相似文献   

5.
Alopecia impairs the physical and mental health of patients. We have previously shown that 8-week-old ob/ob mice have no reactivity to depilation, which is a stimulus that induces anagen transition in normal mice, while no hair cycle abnormalities have been reported in other studies until mice reach 7 weeks of age. Therefore, we hypothesized that ob/ob mice have abnormalities in hair cycle progression beyond 7 weeks of age. We examined 6- to 24-week-old ob/ob and 6- to 10-week-old normal mice. After acclimation, the dorsal skin was harvested and the hair cycle phase was identified histologically and immunohistochemically. Normal mice showed catagen–telogen and telogen–anagen transitions at 6 and 8–9 weeks old, respectively. In contrast, the anagen–catagen transition was observed in 7-week-old mice and the telogen phase was maintained from 10 to 24 weeks in most ob/ob mice. These results suggests that ob/ob mice are a possible model animal for telogen effluvium.  相似文献   

6.
The hair growth cycle consists of three stages known as the anagen (growing), catagen (involution), and telogen (resting) phases. This cyclical growth of hair is regulated by a diversity of growth factors. Although normal expression of both epidermal growth factor and its receptor (EGFR) in the outer root sheath is down-regulated with the completion of follicular growth, here we show that continuous expression of epidermal growth factor in hair follicles of transgenic mice arrested follicular development at the final stage of morphogenesis. Data from immunoprecipitation and immunoblotting showed that epidermal growth factor signals through EGFR/ErbB2 heterodimers in skin. Furthermore, topical application of tyrphostin AG1478 or AG825, specific inhibitors of EGFR and ErbB2, respectively, completely inhibited new hair growth in wild type mice but not in transgenic mice. When the transgenic mice were crossed with waved-2 mice, which possess a lower kinase activity of EGFR, the hair phenotype was rescued in the offspring. Taken together, these data suggest that EGFR signaling is indispensable for the initiation of hair growth. On the other hand, continuous expression of epidermal growth factor prevents entry into the catagen phase. We propose that epidermal growth factor functions as a biologic switch that is turned on and off in hair follicles at the beginning and end of the anagen phase of the hair cycle, guarding the entry to and exit from the anagen phase.  相似文献   

7.
Transforming growth factor-β-activated kinase 1 (TAK1) is a member of the NF-κB pathway and regulates inflammatory responses. We previously showed that TAK1 also regulates keratinocyte growth, differentiation, and apoptosis. However, it is unknown whether TAK1 has any role in epithelial–mesenchymal interactions. To examine this possibility, we studied the role of TAK1 in mouse hair follicle development and cycling as an instructive model system. By comparing keratinocyte-specific TAK1-deficient mice (Map3k7 fl/flK5-Cre) with control mice, we found that the number of hair germs (hair follicles precursors) in Map3k7 fl/flK5-Cre mice was significantly reduced at E15.5, and that subsequent hair follicle morphogenesis was retarded. Next, we analyzed the role of TAK1 in the cyclic remodeling in follicles by analyzing hair cycle progression in mice with a tamoxifen-inducible keratinocyte-specific TAK1 deficiency (Map3k7 fl/flK14-Cre-ERT2). After active hair growth (anagen) was induced by depilation, TAK1 was deleted by topical tamoxifen application. This resulted in significantly retarded anagen development in TAK1-deficient mice. Deletion of TAK1 in hair follicles that were already in anagen induced premature, apoptosis-driven hair follicle regression, along with hair follicle damage. These studies provide the first evidence that the inflammatory mediator TAK1 regulates hair follicle induction and morphogenesis, and is required for anagen induction and anagen maintenance.  相似文献   

8.
Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used α-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of β-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and α-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.  相似文献   

9.
Earlier studies demonstrated that knock-out of fibroblast growth factor-5 gene (Fgf-5) prolonged anagen VI phase of hair cycle, resulting long hairs in the mice. We showed the activities on hair growth of the two Fgf-5 gene products, one of which, FGF-5 suppressed hair growth by inhibiting anagen proceeding and inducing the transition from anagen to catagen, and FGF-5S, a shorter polypeptide with FGF-5-antagonizing activity translated from alternatively spliced mRNA, suppressed this activity of FGF-5. As the results suggested that FGF-5 antagonist would increase hair growth, we synthesized various peptides having partial sequences of human FGF-5 and FGF-5S and determined their FGF-5 antagonist activity. Among them, a decapeptide designated P3 (95-VGIGFHLQIY-104) that aligns with receptor binding sites of FGF-1 and FGF-2 suppressed FGF-5-induced proliferation of BALB/3T3 A31 and NIH/3T3 murine fibroblasts, and FGF receptor-1c (FGFR-1c)-transfected Ba/F3 cell line (FR-Ba/F3 cells). IC50s of this peptide on these cell proliferations were 64, 28, 146 microM, respectively. On the other hand, IC50 of this peptide on binding of FGF-5 to the FGFR-1(IIIc)/Fc chimera was 483 microM. Examination in dorsal depilated mice revealed that the P3 peptide reduced the activity of FGF-5 to recover hair pigmentation and hair follicle lengths. The classification of histologically observed skin sections showed FGF-5-induced delations of anagen procedure had reduced by the P3 peptide. The anti-Ki67 antibody staining of hair follicles was inhibited by administration of FGF-5, and this inhibition by FGF-5 was recovered by administration of the P3 peptide. The P3 peptide alone did not affect hair follicle length and hair cell proliferation. These results indicate that the decapeptide antagonized FGF-5 activity in vivo, and reduced the inhibition of FGF-5 in hair growth, confirming that FGF-5 inhibitors are promising substances against hair loss and/or for promoting hair growth.  相似文献   

10.
11.
Desmosomal cadherins are essential cell adhesion molecules expressed in the epidermis. We identified a mutation of a cadherin superfamily member, namely, desmoglein 4 (Dsg4), in early onset of death (EOD)( hage ) mice with hypotrichosis. The mutation was induced by the insertion of an early transposon II-beta into intron 8 of Dsg4. Mast cell hyperplasia was observed in the skin of EOD( hage ) mice. The abnormally expanded population of lpr T cells, i.e., CD4(-)CD8(-)B220(+)Thy1.2(+) alphabetaT cells, in the splenocytes of EOD mice was reduced in EOD( hage ) mice. Therefore, it was suspected that the long-living mutant EOD( hage ) mice were selected from lupus-prone EOD mice because of their immunological immaturity. These findings clearly indicate that Dsg4 is an important molecule for the formation of hair follicles and hypothesize that unorganized hyperplastic hair follicles in anagen due to the Dsg4 mutation provide niches for mast cell precursors in the skin.  相似文献   

12.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

13.
毛囊生长周期中,真皮乳头和毛基质间的基质 上皮信号调控细胞的增殖和分化。多功能细胞调控因子胰岛素样生长因子1(IGF1)是该信号路径的成员之一。第1个毛囊生长周期决定着毛囊的正常生长和发育,但IGF1在此期的作用未见报道。实时荧光定量PCR结果显示,IGF1在生长期皮肤中的相对表达量最低,在退化期表达量最高,在静止期表达量又降低。与生长初期相比,IGF1在退化期和静止期的表达量呈差异极显著(P<0.01);胰岛素样生长因子1受体(IGF1R)在生长期皮肤中的相对表达量最高,在退化期表达量最低,而在静止期表达量又升高。与生长初期相比,IGF1R在退化期和静止期的表达量呈差异极显著(P<0.01)。Western 印迹结果显示,IGF1和IGF1R蛋白在小鼠皮肤第1个毛囊生长周期各阶段的表达趋势分别与其mRNA的表达趋势一致;免疫组织化学结果表明,IGF1主要分布在小鼠表皮,而IGF1R免疫阳性在小鼠毛囊毛球部、内外根鞘和毛乳头均有分布。以上实验结果揭示,IGF1和IGF1R在小鼠皮肤第1个毛囊生长周期的各阶段的差异性表达,可能在毛囊生长周期各阶段的转化过程中参与了黑色素的形成。然而,IGF1和IGF1R表达趋势不一致,提示IGF1在小鼠皮肤中发挥作用时,并非只与IGF1R结合才能发挥作用。  相似文献   

14.
Stimulation of ectodermal organ development by Ectodysplasin-A1   总被引:11,自引:0,他引:11  
Organs developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice. Eda-A2 overexpression did not cause a detectable phenotype. On the contrary, overexpression of Eda-A1 resulted in alterations in a variety of ectodermal organs, most notably in extra organs. Hair development was initiated continuously from E14 until birth, and in addition, the transgenic mice had supernumerary teeth and mammary glands, phenotypes not reported previously in transgenic mice. Also, hair composition and structure was abnormal, and the cycling of hairs was altered so that the growth phase (anagen) was prolonged. Both hairs and nails grew longer than normal. Molar teeth were of abnormal shape, and enamel formation was severely disturbed in incisors. Furthermore, sweat gland function was stimulated and sebaceous glands were enlarged. We conclude that ectodysplasin-Edar signaling has several roles in ectodermal organ development controlling their initiation, as well as morphogenesis and differentiation.  相似文献   

15.
16.
Urokinase plasminogen activator (uPA), a serine proteinase, is important in the development and epidermal wound healing, and seems to play a regulatory role in the proliferation of mouse epidermal keratinocytes (KC). In the present study, we found detectable uPA expression in outer root sheath (ORS) KC in the early anagen phase in mouse vibrissa follicles, but not in the late anagen or in the telogen and categen phases. uPA was also detected in ORS KC cultured from neonatal mice vibrissa. Specific exogenous inhibitors of uPA, amiloride and uPA antibody, significantly reduced the proliferation of ORS KC. Thus uPA is consistently elevated in the hyperproliferative hair follicle KC, and inhibition of the enzyme decreases hair follicle KC proliferation. We deduce that uPA is a very important mediator of the hair follicle cycle because its activity correlates with ORS KC proliferation.  相似文献   

17.
18.
Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3–7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs.  相似文献   

19.
J C Pena  A Kelekar  E V Fuchs    C B Thompson 《The EMBO journal》1999,18(13):3596-3603
Transgenic mice that overexpress the anti-apoptotic gene bcl-xL under the control of the keratin 14 promoter have significantly shorter hair than non-transgenic littermates. The deficit in hair length correlated with a decrease in the duration of anagen, the growth phase of the hair cycle. A prolongation in telogen, the resting phase of the hair cycle, was also observed in adult animals. In the developing hair bulb, bcl-xL transgene expression was observed exclusively in the outer root sheath (ORS) cells. Bcl-xL expression enhanced the survival of ORS cells treated with apoptotic stimuli. The results suggest that preventing the apoptotic death of ORS cells during anagen leads to a more rapid termination of progenitor cell commitment/proliferation, while the increased survival of ORS cells during telogen delays the initiation of a new hair cycle. ORS cells produce fibroblast growth factor-5 (FGF-5), which acts in a paracrine fashion to terminate precursor cell division during anagen. The short hair phenotype of bcl-xL transgenic mice was substantially reversed in FGF-5-deficient mice. Thus, the production of growth inhibitory factors by ORS cells may provide a mechanism through which the hair-growth cycle is regulated by cell survival.  相似文献   

20.
Treatment of excessive hair growth is an important issue in both dermatological and cosmetic practice. In contrast to treatments with medication, most physical methods are treatments that focus on the hair follicle. To obtain insight in the failure behavior of the anchorage of hairs, hairs were extracted (in vitro) from pig skin at a speed of 0.1mm/s, one at a time. The pulling force and tweezers displacement were recorded. The extracted hairs were classified with respect to the phase in the growing cycle: anagen (growing phase), telogen (resting phase) or other (catagen phase or unable to determine). The anagen hairs showed a different relation between the tweezers displacement and the pulling force than the telogen hairs. Moreover, the maximum force that could be applied before a hair was extracted proved to be lower for anagen hairs than for telogen hairs (0.36N, 1.8N, respectively). The extracted hair length, defined as the part of the hair that had been embedded in the skin which was extracted, was higher for anagen hairs than for telogen hairs (4.8mm, 3.0mm, respectively). Removing proximal skin tissue and the embedded parts of the anagen hair (root) resulted in a change of the extraction curves. The results indicate that two phenomena play a role in the anchorage of anagen hairs. We have proposed a model for the extraction of an anagen hair that has been based on these results: first the interface between hair and skin that is located around the inner root sheath (IRS) starts to fail, followed by failing of the hair itself in the region where the hair keratinizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号