首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
rhG-CSF (recombinant human granulocyte-colony stimulating factor) was chemically conjugated with branched mPEG (monomethoxyl polyethylene glycols), which was synthesized by a new method with the reaction between highly reactive carboxymethylated PEG succinimidy ester (SCM-PEG) and strongly nuclophilicitic amino group of lysine ethyl ester hydrochloride (lys-OEt 2HCl) in methylene chloride. The monopegylated rhG-CSF with branched mPEG (mono-B-pegylated rhG-CSF) was purified by one-step cationic exchange chromatography and characterized with HPSEC (high performance size exclusion chromatography), SDS-PAGE and MALDI-TOF MS. A monopegylated rhG-CSF with linear mPEG (mono-L-pegylated rhG-CSF) was also prepared to investigate the effect of structural difference on bioactivities. The comparison of mono-B-pegylated and mono-L-pegylated rhG-CSF was carried out on in vitro bioactivity, in vivo half-life time and Fr (relative bioavailability). The results showed that the in vitro relative bioactivity decreased to 54%, 61% for mono-B-pegylated and mono-L-pegylated rhG-CSF, respectively. However, compared with the unmodified rhG-CSF, the mono-B-pegylated and mono-L-pegylated rhG-CSF prolonged plasma half-life time from 40 min to 190 min and 145 min, respectively. The Fr was 2.01 for the mono-B-pegylated rhG-CSF, while 1.32 for the mono-L-pegylated. These results suggested that the mono-B-pegylated rhG-CSF is more effective in improving pharmacokinetic performance than the mono-L-pegylated and unmodified rhG-CSF.  相似文献   

2.
The amino acid homopolymers, poly-L-lysine and poly-L-ornithine, have been modified by the covalent attachment of palmitoyl and methoxypoly(ethylene glycol) (mPEG) residues to produce a new class of amphiphilic polymers-PLP and POP, respectively. These amphiphilic amino acid based polymers have been found to assemble into polymeric vesicles in the presence of cholesterol. Representatives of this new class of polymeric vesicles have been evaluated in vitro as nonviral gene delivery systems with a view to finding delivery systems that combine effective gene expression with low toxicity in vivo. In addition, the drug-carrying capacity of these polymeric vesicles was evaluated with the model drug doxorubicin. Chemical characterization of the modified polymers was carried out using (1)H NMR spectroscopy and the trinitrobenzene sulfonic acid (TNBS) assay for amino groups. The amphiphilic polymers were found to have an unreacted amino acid, palmitoyl, mPEG ratio of 11:5:1, and polymeric vesicle formation was confirmed by freeze-fracture electron microscopy and drug encapsulation studies. The resulting polymeric vesicles, by virtue of the mPEG groups, bear a near neutral zeta-potential. In vitro biological testing revealed that POP and PLP vesicle-DNA complexes are about one to 2 orders of magnitude less cytotoxic than the parent polymer-DNA complexes although more haemolytic than the parent polymer-DNA complexes. The polymeric vesicles condense DNA at a polymer:DNA weight ratio of 5:1 or greater and the polymeric vesicle-DNA complexes improved gene transfer to human tumor cell lines in comparison to the parent homopolymers despite the absence of receptor specific ligands and lysosomotropic agents such as chloroquine.  相似文献   

3.
Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.  相似文献   

4.
Chitosan-N-trimethylaminoethylmethacrylate chloride (CS-TM) copolymers with different quaternization degrees (DQ, 30 and 50%) were synthesized and further modified with methoxypoly(ethylene glycol) (mPEG) of different molecular weights (MW, 2 and 5 kDa). The hydrophilicity of the resulting copolymers was significantly increased as evidenced by decreased contact angles. PEGylation with higher mPEG MW could significantly reduce the hemolytic potential, protein adsorption, cytotoxicity and intestinal mucosal damage of CS-TM (DQ of 50%, CS-TM50). PEGylation resulted in a considerable increase in the release of reducing sugars following 84-day lysozyme-catalyzed degradation, and an increase in mPEG MW led to a faster degradation of CS-TM50. The antioxidant activity of CS-TM50 was superior to that of PEGylated CS-TM50, exhibiting dose-dependent reducing power and lipid peroxidation inhibition effect. In conclusion, quaternization and subsequent PEGylation of CS with rational modification degree of its free amino group will be a potential strategy for the development of biocompatible and biodegradable CS derivatives.  相似文献   

5.
Multidrug resistance and drug toxicity represent major obstacles to cancer chemotherapy. Drug delivery systems, such as liposomes, offer improved chemical stability of encapsulated drugs, enhanced accumulation in tumors and decreased toxicity. The aim of this study was to evaluate the tissue distribution of stealth pH-sensitive liposomes containing cisplatin (SpHL-CDDP), compared with free cisplatin (CDDP), in solid Ehrlich tumor-bearing mice. After administering a 6 mg/kg single intravenous bolus injection of either free radiolabeled cisplatin or SpHL containing radiolabeled cisplatin, blood and tissues were analyzed for cisplatin content by determining radioactivity using an automatic scintillation apparatus. The area under the CDDP concentration-time curve (AUC) obtained for blood after SpHL-CDDP administration was 2.1 fold larger when compared with free CDDP treatment. The longer circulation of SpHL-CDDP led to a higher tumor AUC, and the determination of the ratio between AUC in each tissue and that in blood (Kp) showed a higher accumulation of CDDP in SpHL-CDDP administrated tumors. The SpHL-CDDP was also significantly uptaken by the liver and spleen. The distribution of SpHL-CDDP in these organs was extensive, revealing a high extravasation of CDDP to the tissues. The SpHL-CDDP kidney uptake was also greater than that of free CDDP; however, the Kp value found was lower. This indicates that the SpHL-CDDP led to a reduction of CDDP retention by renal tissue. Thus, these results indicate that the SpHL-CDDP may indeed be useful in alleviating renal damage induced by CDDP and thus represents a promising delivery system for cancer treatment through CDDP.  相似文献   

6.
Resistance to cisplatin [cis-diamminedichloroplatinum(II), CDDP] chemotherapy is a major problem in the clinic. Understanding the molecular basis of the intracellular accumulation of CDDP and other platinum-based anticancer drugs is of importance in delineating the mechanism of resistance to these clinically important therapies. Different molecular mechanisms may coexist, but defective uptake of CDDP is one of the most consistently identified characteristics of cells selected for CDDP resistance. We have studied the impact of intracellular chloride concentration on platinum-based compound accumulation in the human GLC4, GLC4/CDDP, and K562 tumor cell lines. We show that (1) a decrease of intracellular chloride concentration yielded an increase of CDDP accumulation and vice versa and (2) the intracellular chloride concentration in GLC4/CDDP cells is higher than in sensitive cells, whereas CDDP accumulation shows the opposite behavior. The identification of chloride as a critical determinant of CDDP intracellular accumulation and the molecular mechanisms by which CDDP-resistant cells modulate chloride concentration may allow alternative therapeutic approaches. Our findings indicate that increase of intracellular chloride concentration may be a major determinant of CDDP resistance.  相似文献   

7.
Yang C  Wang X  Li H  Goh SH  Li J 《Biomacromolecules》2007,8(11):3365-3374
Cationic polymers have been receiving growing attention as gene delivery carriers. Herein, a series of novel cationic supramolecular polyrotaxanes with multiple cationic alpha-cyclodextrin (alpha-CD) rings threaded and blocked on a poly[(ethylene oxide)-ran-(propylene oxide)] (P(EO-r-PO)) random copolymer chain were synthesized and investigated for gene delivery. In the cationic polyrotaxanes, approximately 12 cationic alpha-CD rings were threaded on the P(EO-r-PO) copolymer with a molecular weight of 2370 Da and an EO/PO molar ratio of 4:1, while the cationic alpha-CD rings were grafted with linear or branched oligoethylenimine (OEI) of various chain lengths and molecular weights up to 600 Da. The OEI-grafted alpha-CD rings were only located selectively on EO segments of the P(EO-r-PO) chain, while PO segments were free of complexation. This increased the mobility of the cationic alpha-CD rings and the flexibility of the polyrotaxanes, which enhanced the interaction of the cationic alpha-CD rings with DNA and/or the cellular membrane. All cationic polyrotaxanes synthesized in this work could efficiently condense plasmid DNA to form nanoparticles that were suitable for delivery of the gene. Cytotoxicity studies showed that the cationic polyrotaxanes with all linear OEI chains of molecular weights up to 423 Da exhibited much less cytotoxicity than high-molecular-weight branched polyethylenimine (PEI) (25 kDa) in both HEK293 and COS7 cell lines. The cationic polyrotaxanes displayed high gene transfection efficiencies in a variety of cell lines including HEK293, COS7, BHK-21, SKOV-3, and MES-SA. Particularly, the gene delivery capability of the cationic polyrotaxanes in HEK293 cells was much higher than that of high-molecular-weight branched PEI (25 k).  相似文献   

8.
The release of cisplatin (CDDP) encapsulated in temperature-sensitive unilamellar liposomes to murine SCC VII carcinoma by localized hyperthermia and the effects of the treatment on tumor growth were studied. A transition temperature of the temperature-sensitive liposomes containing cisplatin (LIP-CDDP) was 41 degrees C. Twenty-four hours after injection of LIP-CDDP, the heated tumors (42 degrees C, 60 min) contained 3.3 times more CDDP than the unheated tumors receiving free CDDP. Although the uptake of liposome-associated CDDP by liver was approximately threefold greater at 1.5 h after injection than uptake of free CDDP, it decreased about 50% over a 24-h period. No difference in uptake of the two forms of CDDP by kidney was observed. The combination of LIP-CDDP and localized heating at 42 or 43 degrees C was more effective relative to the amount of CDDP in delaying tumor growth than that of free CDDP and hyperthermia. Treatment with LIP-CDDP plus local heating resulted in a dose-modifying factor of 5.3 when compared with free CDDP and no hyperthermia. The dose-modifying factor was 2.8 when treatment with LIP-CDDP and heat was compared with treatment with free CDDP and heat. Thus CDDP could be released selectively from the temperature-sensitive liposomes by heat and resulted in both a greater uptake of the drug and a delay in tumor growth.  相似文献   

9.
Osteosarcoma is the most common primary malignant bone tumor. Although cisplatin is the primary chemotherapy used in osteosarcoma treatment, the cisplatin resistance remains a big challenge for improving overall survival. The store-operated calcium (Ca2+) entry (SOCE) and its major mediator Stim1 have been shown to be implicated in a number of pathological processes typical for cancer. In this study, we showed that Stim1 expression was significantly increased in chemo-resistant osteosarcoma tissues compared with chemo-sensitivity tissues. Patients with Sitm1 expression exhibited poorer overall survival than Stim1-negative patients. Moreover, un-regulation of Stim1 expression and SOCE were also observed in cisplatin-resistant MG63/CDDP cells compared with their parental cells. Cisplatin treatment obviously reduced Stim1 expression and SOCE in cisplatin-sensitivity MG63 cells, but had no effects on MG63/CDDP cells. In addition, cisplatin resulted in a more pronounced increase of endoplasmic reticulum (ER) stress in MG63 cells than in their resistant variants, which was evidenced by the activation of molecular markers of ER stress, GRP78, CHOP and ATF4. Knockdown of Stim1 using siRNA remarkably enhanced cisplatin-induced apoptosis and ER stress in MG63/CDDP cells, thereby sensitizing cancer cells to cisplatin. On the other hand, overexpression of Stim1 markedly reversed apoptosis and ER stress following cisplatin treatment. Taken together, these results demonstrate that Stim1 as well as Ca2+ entry contributes cisplatin resistance via inhibition of ER stress-mediated apoptosis, and provide important clues to the mechanisms involved in cisplatin resistance for osteosarcoma treatment. Stim1 represents as a target of cisplatin and blockade of Stim1-mediated Ca2+ entry may be a useful strategy to improve the efficacy of cisplatin to treat osteosarcoma.  相似文献   

10.
Emerging evidence suggests that miR-143 plays an important role in the regulation of tumor sensitivity to chemotherapeutic agents. The study explores the underlying mechanism of miR-143 in reversing cisplatin resistance in ovarian cancer. The cisplatin-resistant ovarian cancer cell line A2780/CDDP was induced and established via treating A2780 cells by gradually increasing cisplatin concentrations. The IC50 values of A2780/CDDP and A2780 to cisplatin were 218.10 ± 1.12 and 21.99 ± 1.12 μM, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-143 was significantly decreased in A2780/CDDP cells compared with A2780 cells. miR-143 overexpression decreased cisplatin resistance in A2780/CDDP, and miR-143 inhibition decreased A2780 sensitivity to cisplatin. Results of qRT-PCR, Western blot analysis, and luciferase reporter assay indicated that the direct target of miR-143 was DNMT3A, which, in turn, was upregulated in A2780/CDDP. DNMT3A overexpression antagonized the sensitizing effect of miR-143 on A2780/CDDP to cisplatin. Knocking down of DNMT3A reduced cisplatin resistance in A2780/CDDP, while overexpression of DNMT3A increased cisplatin resistance in A2780. Methylation-specific polymerase chain reaction results showed that the methylation level in the promoter region of the miR-143 precursor gene was higher in A2780/CDDP cells than in A2780 cells. DNMT3A mediated the hypermethylation of the miR-143 precursor gene, resulting in miR-143 downregulation in A2780/CDDP. miR-143 inhibited cell growth of A2780/CDDP cell in nude mice. Our findings indicated the negative feedback between miR-143 and DNMT3A as a crucial epigenetic modifier of cisplatin resistance in ovarian cancer.  相似文献   

11.
Olas B  Wachowicz B  Buczyński A 《Cytobios》2000,102(400):75-84
Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most widely used chemotherapy drugs. Unfortunately, it induces serious side effects such as haematological toxicity. The aim of the present study was to evaluate the effect of CDDP on the first step in blood platelet activation-platelet adhesion, induced by thrombin or adenosine diphosphate (ADP), to collagen and fibrinogen. The action of cisplatin was compared with the action of cisplatin glutathione complex (GS-Pt) on platelet adhesion and on free radical generation measured by chemiluminescence. Pretreatment of blood platelets with cisplatin (0.1-20 microM) caused a dose- and time-dependent reduction of platelet adhesion to collagen and fibrinogen (p <0.05). The GS-Pt complex (20 microM, 30 min) had a stronger inhibitory effect on this process. Moreover, the complex (R2 = 0.992; p <0.05) also stimulated the chemiluminescence of blood platelets to a greater extent than CDDP alone (R2 = 0.999; p <0.01). The results suggest that inhibition of platelet adhesion in the presence of cisplatin and its complex with glutathione correlates with the generation of reactive oxygen species in these cells.  相似文献   

12.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

13.
cis-Diamminedichloroplatinum (II) (cisplatin, CDDP) is a widely used chemotherapeutic agent. While many tumors are highly responsive to CDDP, certain tumors are resistant to this drug, limiting its efficacy. The anti-tumor activity of CDDP is believed to result from its coordination bonding to chromosomal DNA. Alterations in tumor cell sensitivity to CDDP may result from the presence or absence of protein(s) which specifically recognize CDDP-damaged DNA. We have developed a damaged-DNA affinity precipitation assay that allows the direct identification of cellular proteins that bind to CDDP-damaged DNA. Using this procedure, we have identified several proteins which specifically bind to CDDP-damaged DNA. Two of these proteins have been identified as high mobility group proteins (HMG) 1 and 2 in the current report, we have characterized the binding of these proteins to CDDP-DNA. The calculated Kd of binding to CDDP-damaged DNA was 3.27 x 10(-10) for HMG1 and 1.87 x 10(-10) for HMG2. Using highly specific chemical modifying reagents, we have determined that Cys residues play an important role in protein binding. We also observed that HMG2 will bind to DNA modified with carboplatin and iproplatin although to a lesser extent than to DNA damaged with CDDP. Thus, our results indicate that HMG 2 binds with high affinity to DNA modified with therapeutically active platinum compounds. In addition, our findings suggest that thiol groups play an essential role in the binding of HMG1 and HMG2 to CDDP-DNA.  相似文献   

14.
A series of methoxy poly(ethylene glycol)-succinyl-5'-O-zidovudine conjugates (mPEG-succinyl-AZT) with different molecular weight (M(w): 750 Da, 2, 5 or 10 kDa) of mPEG were synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy, and matrix-assisted laser desorption/ionization time of flight mass (MALDI TOF MS) spectrometry analysis. All conjugates showed good stability in vitro release experiments, and good anti-HIV activity and low cytotoxicity in MT-4 cells, in which, mPEG(750)-succinyl-AZT exhibited good inhibition to wild-type viruses (strains IIIB and ROD) with EC(50) values of 0.11 and 0.090 μmol/L, respectively, and it showed no cytotoxicity up to 110 μmol/L. Oral pharmacokinetic study in rats showed the half-life time (T(1/2)) of all conjugates are prolonged compared to free AZT. Especially, mPEG(750)-succinyl-AZT displayed a ~2.3-fold prolonged half-life and approximately 224% increased bioavailability of AZT.  相似文献   

15.
Alloimmunization to donor blood group antigens remains a significant problem in transfusion medicine. To attenuate the risk of alloimmunization, we have pioneered the membrane grafting of methoxypoly(ethylene glycol) (mPEG) to produce immunocamouflaged red blood cells (RBC). Grafting of the mPEG was accomplished using cyanuric chloride activated mPEG (CmPEG; M(r) = 5000), benzotriazole carbonate methoxyPEG (BTCmPEG; M(r) = 2000, 5000 or 20000); or N-hydroxysuccinimidyl ester of mPEG propionic acid (SPAmPEG; M(r) = 5000, or 20000). Because of the heterogeneity of grafting, a crucial tool in developing the stealth RBC is an ability to purify the modified RBC from unmodified (immunogenic) donor cells. As demonstrated, a (5, 4) dextran:PEG aqueous two-phase polymer partitioning system cleanly separated the immunologically silent mPEG-grafted human RBC from control or lightly modified cells. Cell mixing experiments employing varying ratios of mPEG-modified and control RBC confirmed the purification efficacy of the phase partitioning system. Proportional changes in PEG-rich phase partitioning were achieved by increasing either the quantity of surface mPEG or the mPEG molecular weight. The biological viability of purified mPEG-RBC (BTCmPEG; [M(r) = 20000) was demonstrated by their normal in vivo survival at immunoprotective grafting concentrations (相似文献   

16.
In order to improve its stability, immobilized Concanavalin A (Con A) on Toyopearl adsorbents was conjugated with monomethoxy poly(ethylene glycol) succinimidyl propionate (mPEG-SPA) with different molecular weight. A colorimetric method using ninhydrin is proposed to determine the degree of PEGylation; this method has proved to be easy applicable and reproducible. The PEGylation reaction was studied in detail to elucidate how parameters such as molar ratio of mPEG-SPA to Con A and molecular weight of mPEG-SPA affect the degree of PEGylation. The adsorption isotherms of glucose oxidase (GOD) onto native and PEGylated Con A adsorbents showed that the modification did not alter substantially the specificity of the carbohydrate binding ability of Con A. However, the binding capacity for GOD was slightly reduced probably due to the steric hindrance caused by mPEG chains. Adsorption kinetic studies revealed a lower adsorption rate after PEGylation which was attributed to the steric effect. The dynamic adsorption capacity for modified Con A depended very much on the degree of PEGylation and the molecular weight of mPEG derivatives. The adsorption capacity could be highly preserved for Toyopearl Con A modified by mPEG2k (90% of the original adsorption capacity) even with a degree of PEGylation up to 20% (the ratio of primary amino groups of PEGylated immobilized Con A to that of native immobilized Con A). Studies show that the binding capacity of PEGylated Con A was highly preserved under mild process conditions. PEGylated Con A also exhibited obviously higher stability against more stressful conditions such as the exposure to organic solvents and high temperatures. Conjugation of Con A with mPEG2k provided better adsorption performance thus has greater potential for application in affinity separation processes compared with mPEG5k. The fact that PEGylation stabilizes the properties of Con A may greatly expand the range of applications of unstable proteins to bioprocessing (e.g. biocatalysis and downstream separation) as well as other protein applications (e.g. medication, industrial use, etc.).  相似文献   

17.
Branched polyethylene glycol for protein precipitation   总被引:1,自引:0,他引:1  
The use of linear PEGs for protein precipitation raises the issues of high viscosity and limited selectivity. This paper explores PEG branching as a way to alleviate the first problem, by using 3-arm star as the model branched structure. 3-arm star PEGs of 4,000 to 9,000 Da were synthesized and characterized. The effects of PEG branching were then elucidated by comparing the branched PEG precipitants to linear versions of equivalent molecular weights, in terms of IgG recovery from CHO cell culture supernatant, precipitation selectivity, solubility of different purified proteins, and precipitation kinetics. Two distinct effects were observed: PEG branching reduced dynamic viscosity; secondly, the branched PEGs precipitated less proteins and did so more slowly. Precipitation selectivity was largely unaffected. When the branched PEGs were used at concentrations higher than their linear counterparts to give similar precipitation yields, the dynamic viscosity of the branched PEGs were noticeably lower. Interestingly, the precipitation outcome was found to be a strong function of PEG hydrodynamic radius, regardless of PEG shape and molecular weight. These observations are consistent with steric mechanisms such as volume exclusion and attractive depletion.  相似文献   

18.
Mesothelioma is a highly malignant tumor with a poor prognosis and limited treatment options. Although cisplatin (CDDP) is an effective anticancer drug, its response rate is only 20%. Therefore, discovery of biomarkers is desirable to distinguish the CDDP-susceptible versus resistant cases. To this end, differential proteome analysis was performed to distinguish between mesothelioma cells of different CDDP susceptibilities, and this revealed that expression of annexin A4 (ANXA4) protein was higher in CDDP-resistant cells than in CDDP-susceptible cells. Furthermore, ANXA4 expression levels were higher in human clinical malignant mesothelioma tissues than in benign mesothelioma and normal mesothelial tissues. Finally, increased susceptibility was observed following gene knockdown of ANXA4 in mesothelioma cells, whereas the opposite effect was observed following transfection of an ANXA4 plasmid. These results suggest that ANXA4 has a regulatory function related to the cisplatin susceptibility of mesothelioma cells and that it could be a biomarker for CDDP susceptibility in pathological diagnoses.  相似文献   

19.
A new hydrophobic platinum(IV) complex, LA-12, a very efficient anticancer drug lacking cross-resistance with cisplatin (CDDP), is now being tested in clinical trials. Here we investigated the apoptogenic activity of LA-12 and its effect on gap-junctional intercellular communication (GJIC) in the rat liver epithelial cell line WB-F344. LA-12 induced apoptosis much more efficiently than did CDDP due to a combination of rapid penetration into the cell and attack on DNA, leading to fast activation of p53 and caspase-3. Exposure of WB-F344 cells to LA-12 led to rapid induction of the time- and dose-dependent decrease in GJIC. On the molecular level, loss of GJIC induced by LA-12 was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated by the use of inhibitors of ERK activation. Inhibition of GJIC was linked to rapid hyperphosphorylation of connexin-43 and disappearance of connexon clusters from membranes, which was not observed in the case of CDDP.  相似文献   

20.
A series of novel N-hydroxypropenamides containing adamantane moiety were identified and most of them exhibited HDAC inhibitory activity and could reverse the resistance of cisplatin in NSCLC cell lines. In this process, molecular docking was employed to verify the rationality of designing, subsequently, target compounds were synthesized and conducted to enzyme- and cell-based biological evaluation. Most of synthesized compounds could inhibit HDAC activity with the IC50 values lower than 50 nM and result in the increase of Ac-H4 and p21 in A549 cells. Importantly, we assessed the reversal effect of those compounds and found several compounds display an anti-resistant effect in lung cancer cells, especially compound 8f.As compared to belinostat and cisplatin, compound 8f showed improved inhibitory activity against A549/CDDP cell lines with IC50 value of 5.76 μM, and far lower resistance index of 1.24. Moreover, the structure–activity relationships of these compounds were summarized and compound 8f could serve as a research tool for identifying the mechanism of reversing resistance and a template for designing novel compounds to reverse cisplatin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号