首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious diseases are the leading causes of death worldwide. Hence, there is a need to develop new antimicrobial agents. Traditional method of drug discovery is time consuming and yields a few drug targets with little intracellular information for guiding target selection. Thus, focus in drug development has been shifted to computational comparative genomics for identifying novel drug targets. Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. Availability of L. interrogans serovars and human genome sequences facilitated to search for novel drug targets using bioinformatics tools. The genome sequence of L. interrogans serovar Copenhageni has 5,124 genes while that of serovar Lai has 4,727 genes. Through subtractive genomic approach 218 genes in serovar Copenhageni and 158 genes in serovar Lai have been identified as putative drug targets. Comparative genomic approach had revealed that 88 drug targets were common to both the serovars. Pathway analysis using the Kyoto Encyclopaedia of Genes and Genomes revealed that 66 targets are enzymes and 22 are non-enzymes. Sixty two common drug targets were predicted to be localized in cytoplasm and 16 were surface proteins. The identified potential drug targets form a platform for further investigation in discovery of novel therapeutic compounds against Leptospira.  相似文献   

2.
Antifungal drug discovery is starting to benefit from the enormous advances in the genomics field, which have occurred in the past decade. As traditional drug screening on existing targets is not delivering the long-awaited potent antifungals, efforts to use novel genetics and genomics-based strategies to aid in the discovery of novel drug targets are gaining increased importance. The current paradigm in antifungal drug target discovery focuses on basically two main classes of targets to evaluate: genes essential for viability and virulence or pathogenicity factors. Here we report on recent advances in genetics and genomics-based technologies that will allow us not only to identify and validate novel fungal drug targets, but hopefully in the longer run also to discover potent novel therapeutic agents. Fungal pathogens have typically presented significant obstacles when subjected to genetics, but the creativity of scientists in the anti-infectives field and the cross-talk with scientists in other areas is now yielding exciting new tools and technologies to tackle the problem of finding potent, specific and non-toxic antifungal therapeutics.  相似文献   

3.
A vast number of genes of unknown function threaten to clog drug discovery pipelines. To develop therapeutic products from novel genomic targets, it will be necessary to correlate biology with gene sequence information. Industrialized mouse reverse genetics is being used to determine gene function in the context of mammalian physiology and to identify the best targets for drug development.  相似文献   

4.
The emergence of multidrug-resistant strain of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strain has highlighted the urgent need for the alternative and effective therapeutic approach to combat the menace of this nosocomial pathogen. In the present work novel potential therapeutic drug targets have been identified through the metabolic pathways analysis. All the gene products involved in different metabolic pathways of CA-MRSA in KEGG database were searched against the proteome of Homo sapiens using the BLASTp program and the threshold of E-value was set to as 0.001. After database searching, 152 putative targets were identified. Among all 152 putative targets, 39 genes encoding for putative targets were identified as the essential genes from the DEG database which are indispensable for the survival of CA-MRSA. After extensive literature review, 7 targets were identified as potential therapeutic drug target. These targets are Fructose-bisphosphate aldolase, Phosphoglyceromutase, Purine nucleoside phosphorylase, Uridylate kinase, Tryptophan synthase subunit beta, Acetate kinase and UDP-N-acetylglucosamine 1-carboxyvinyltransferase. Except Uridylate kinase all the identified targets were involved in more than one metabolic pathways of CA-MRSA which underlines the importance of drug targets. These potential therapeutic drug targets can be exploited for the discovery of novel inhibitors for CA-MRSA using the structure based drug design (SBDD) strategy.  相似文献   

5.
The emergence of antibiotic resistance in bacterial pathogens poses a great challenge to public health and emphasizes the need for new antimicrobial targets. The recent development of microbial genomics and the availability of genome sequences allows for the identification of essential genes which could be novel and potential targets for antibacterial drugs. However, these predicted targets need experimental validation to confirm essentiality. Here, we report on experimental validation of a two potential targets in the lipopolysaccharide (LPS) biosynthesis pathway of the pathogen Pseudomonas aeruginosa PAO1 using insertion duplication. Two genes, kdsA and waaG, from LPS encoding proteins 2-dehydro-3-deoxyphosphooctonate aldolase and UDP-glucose (heptosyl) LPS α-1,3-glucosyltransferase were selected as putative target candidates for the gene disruption experiments using plasmid insertion mutagenesis to determine essentiality. The introduction of a selectable ampicillin and kanamycin resistance marker into the chromosome resulted in lack of recovery of antibiotic-resistant colonies suggesting the essentiality of these genes for the survival of P. aeruginosa. Several molecular analyses were carried out in order to confirm the essentiality of these genes. We propose that the above two validated drug targets are essential and can be screened for functional inhibitors for the discovery of novel therapeutic compounds against antibiotic-resistant opportunistic pathogen P. aeruginosa.  相似文献   

6.
Identifying the genes involved in venous thromboembolism (VTE) recurrence is important not only for understanding the pathogenesis but also for discovering the therapeutic targets. We proposed a novel prioritization method called Function-Interaction-Pearson (FIP) by creating gene-disease similarity scores to prioritize candidate genes underling VTE. The scores were calculated by integrating and optimizing three types of resources including gene expression, gene ontology and protein-protein interaction. As a result, 124 out of top 200 prioritized candidate genes had been confirmed in literature, among which there were 34 antithrombotic drug targets. Compared with two well-known gene prioritization tools Endeavour and ToppNet, FIP was shown to have better performance. The approach provides a valuable alternative for drug targets discovery and disease therapy.  相似文献   

7.
Accumulated knowledge of genomic information, systems biology, and disease mechanisms provide an unprecedented opportunity to elucidate the genetic basis of diseases, and to discover new and novel therapeutic targets from the wealth of genomic data. With hundreds to a few thousand potential targets available in the human genome alone, target selection and validation has become a critical component of drug discovery process. The explorations on quantitative characteristics of the currently explored targets (those without any marketed drug) and successful targets (targeted by at least one marketed drug) could help discern simple rules for selecting a putative successful target. Here we use integrative in silico (computational) approaches to quantitatively analyze the characteristics of 133 targets with FDA approved drugs and 3120 human disease genes (therapeutic targets) not targeted by FDA approved drugs. This is the first attempt to comparatively analyze targets with FDA approved drugs and targets with no FDA approved drug or no drugs available for them. Our results show that proteins with 5 or fewer number of homologs outside their own family, proteins with single-exon gene architecture and proteins interacting with more than 3 partners are more likely to be targetable. These quantitative characteristics could serve as criteria to search for promising targetable disease genes.  相似文献   

8.
药物靶点的选择和验证是药物开发研究中一个重要的环节.随着现代分子生物学技术的发展和人类基因组计划的完成,出现了大量可供治疗干预的新型分子靶点,对这些新型分子靶点进行验证成为药物开发科学家所面临的重要任务.为此,就药物靶点及其选择、验证所需的分子技术基础作一简要综述.  相似文献   

9.
New strategies for target identification are urgently needed to tackle the current productivity challenges in drug discovery. By examining successful human drug targets, it can be seen that approximately 50% are associated with genetic disorders. Further analysis shows that these successfully targeted genes share some common evolutionary features, which strongly suggests that evolutionary information can help identify drug targets with the greatest potential for therapeutic development.  相似文献   

10.
Analysis of large gene databases for discovery of novel therapeutic agents   总被引:1,自引:0,他引:1  
During the 1980s and early 1990s the recombinant DNA revolution provided a vital source of therapeutic targets and agents for pharmaceutical research. However, during the early 1990s, it became apparent that the identification and cloning of novel human cDNAs was a rate limiting step in drug discovery and that new technological approaches were required to address the challenge. There was an increasing realisation that the new science of 'genomics', together with the associated large gene sequence databases, would provide a radically new means of generating targets. SmithKline Beecham has been at the forefront of this breakthrough in pharmaceutical research. The productivity of this strategy is illustrated by reference to our work on novel enzymes, chemokines and receptors and new approaches linking genes to pathological processes.  相似文献   

11.
12.
13.
J M Moore 《Biopolymers》1999,51(3):221-243
Over the last ten years, nmr spectroscopy has evolved into an important discipline in drug discovery. Initially, nmr was most useful as a technique to provide structural information regarding protein drug targets and target-ligand interactions. More recently, it has been shown that nmr may be used as an alternative method for identification of small molecule ligands that bind to protein drug targets. High throughput implementation of these experiments to screen small molecule libraries may lead to identification of potent and novel lead compounds. In this review, we will use examples from our own research to illustrate how nmr experiments to characterize ligand binding may be used to both screen for novel compounds during the process of lead generation, as well as provide structural information useful for lead optimization during the latter stages of a discovery program.  相似文献   

14.
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.  相似文献   

15.
Trends in ion channel drug discovery: advances in screening technologies   总被引:2,自引:0,他引:2  
Ion channels mediate and regulate crucial electrical functions throughout the body. They are therapeutic drug targets for a variety of disorders and, in some cases, the direct cause of unwanted side-effects. Advances in medical genetics have increased our knowledge of ion channel structure–function relationships and identified disease-causing mutations in ion channel genes. The recognized importance of these proteins in health and disease has led to an active search for ion channel targets in the multi-billion-dollar worldwide drug discovery market. Trends in ion channel screening technologies have focused on increasing throughput and enhancing information content of assays through electrophysiological approaches. The ability to study ion channels by voltage clamp and their time-, voltage- and state-dependent drug interactions with enhanced throughput will ultimately play a key role in the development of novel, safe ion channel-targeted drugs.  相似文献   

16.
Advances in proteomics have fundamentally changed the paradigm of discovery for drug targets and novel biomarkers. Proteomics methodologies currently used will be reviewed in this paper, including structural proteomics, quantitative proteomics, and functional proteomics. A strategy to identify differentially expressed cell surface proteins as monoclonal therapeutic targets in oncology will be discussed.  相似文献   

17.
DNA microarrays may be used to identify potential molecular targets for drug discovery. Yet, DNA microarray experiments provide massive amounts of data. To limit the choice of potential molecular targets, it may be desirable to eliminate genes coincidentally up-regulated in tissues implicated in absorption, distribution, metabolism, and excretion (ADME) pharmacokinetics. DNA microarray experiments were performed to demonstrate a gene-exclusion approach using as an example RNA samples of neural origin, i.e., a human neuroblastoma cell line (SK-N-SH) and brain tissue, as the intended hypothetical site(s) of drug action. Biomarkers were identified using PharmArray DNA microarrays. The lists of neuroblastoma and neural biomarkers were constrained by limiting selection to the subset of genes that were not highly expressed in three transformed cell lines from liver, colon, and kidney (HepG2, Caco-2, and 786-O, respectively) that are routinely used as representatives of the ADME system during in vitro pharmacology and toxicology experiments. Principal component analysis methods with likelihood ratio-related bioinformatic tools were utilized to identify robust potential biomarker genes for the three ADME-related cell lines, neuroblastoma, and normal brain. Biomarkers of each sample were identified and selected genes were validated by qRT-PCR. Hundreds of biomarkers of the three ADME-related cell types, representing hepatocytes, kidney epithelium, and gastrointestinal tract, may now be used as a valuable database to restrict selection of biomarkers as potential molecular targets from the intended samples (e.g., neuroblastoma in this work). In addition to biomarker discovery per se, this demonstration suggests that our model method may be viable to help restrict gene lists during selection of potential molecular targets for subsequent drug discovery.  相似文献   

18.
《TARGETS》2002,1(4):130-138
Rapid advances in genomics technologies have identified a wealth of new therapeutic targets, but typically these targets are weakly validated with only circumstantial evidence to link them to human disease. The next challenge is testing gene-to-disease connections in a relevant animal model, a time-consuming and uncertain process using conventional reverse-genetic approaches such as knockout and transgenic mice. By contrast, forward genetics proceeds by measuring a physiological process that is relevant to disease, then identifying the gene products that impinge on this process. This ‘phenotype-first’ approach solves the bottleneck of target validation by using clinically relevant assays in a mammalian whole-animal system as a discovery platform. As an unbiased approach to gene discovery and validation, forward genetics will identify novel drug targets and increase the success rate of drug development.  相似文献   

19.
With the completion of sequencing of the human genome, a great deal of interest has been shifted toward functional genomics-based research for identification of novel drug targets for treatment of various diseases. The major challenge facing the pharmaceutical industry is to identify disease-causing genes and elucidate additional roles for genes of known functions. Gene functionalization and target validation are probably the most important steps involved in identifying novel potential drug targets. This review focuses on recent advances in antisense technology and its use for rapid identification and validation of new drug targets. The significance and applicability of this technology as a beginning of the drug discovery process are underscored by relevant cell culture-based assays and positive correlation in specific animal disease models. Some of the antisense inhibitors used to validate gene targets are themselves being developed as drugs. The current clinical trials based on such leads that were identified in a very short time further substantiate the importance of antisense technology-based functional genomics as an integral part of target validation and drug target identification.  相似文献   

20.
The field of drug target discovery is currently very popular with a great potential for advancing biomedical research and chemical genomics. Innovative strategies have been developed to aid the process of target identification, either by elucidating the primary mechanism-of-action of a drug, by understanding side effects involving unanticipated 'off-target' interactions, or by finding new potential therapeutic value for an established drug. Several promising proteomic methods have been introduced for directly isolating and identifying the protein targets of interest that are bound by active small molecules or for visualizing enzyme activities affected by drug treatment. Significant progress has been made in this rapidly advancing field, speeding the clinical validation of drug candidates and the discovery of the novel targets for lead compounds developed using cell-based phenotypic screens. Using these proteomic methods, further insight into drug activity and toxicity can be ascertained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号