共查询到20条相似文献,搜索用时 15 毫秒
1.
V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. 总被引:1,自引:0,他引:1 下载免费PDF全文
Processes vital to life such as respiration and photosynthesis critically depend on the availability of tetrapyrroles including hemes and chlorophylls. tRNA-dependent catalysis generally is associated with protein biosynthesis. An exception is the reduction of glutamyl-tRNA to glutamate-1-semialdehyde by the enzyme glutamyl-tRNA reductase. This reaction is the indispensable initiating step of tetrapyrrole biosynthesis in plants and most prokaryotes. The crystal structure of glutamyl-tRNA reductase from the archaeon Methanopyrus kandleri in complex with the substrate-like inhibitor glutamycin at 1.9 A resolution reveals an extended yet planar V-shaped dimer. The well defined interactions of the inhibitor with the active site support a thioester-mediated reduction process. Modeling the glutamyl-tRNA onto each monomer reveals an extensive protein-tRNA interface. We furthermore propose a model whereby the large void of glutamyl-tRNA reductase is occupied by glutamate-1-semialdehyde-1,2-mutase, the subsequent enzyme of this pathway, allowing for the efficient synthesis of 5-aminolevulinic acid, the common precursor of all tetrapyrroles. 相似文献
2.
Regulation of tetrapyrrole biosynthesis in higher plants has been attributed to negative feedback control. Two effectors of feedback inhibition have been identified, heme and the FLU protein. Inhibition by heme implicates the Fe-branch via regulation of the initial step of tetrapyrrole synthesis. In the present work a FLU-containing chloroplast membrane complex was identified, that besides FLU comprises the four enzymes catalyzing the final steps of chlorophyll synthesis. The results support the notion that FLU links chlorophyll synthesis and the target of feedback control, glutamyl-tRNA reductase, thereby allowing also the Mg-branch to control the initial step of tetrapyrrole synthesis. 相似文献
3.
Glutamyl-tRNA reductase (GluTR) catalyzes the first step of tetrapyrrole biosynthesis in plants, archaea and most bacteria.
The catalytic mechanism of the enzyme was elucidated both by biochemical data and the determination of the high-resolution
crystal structure of the enzyme from the archaeon Methanopyrus kandleri in complex with a competitive inhibitor. The dimeric enzyme has an unusual V-shaped architecture where each monomer consists
of three domains linked by a long `spinal' α-helix. The central catalytic domain specifically recognizes the glutamate moiety
of the substrate. It bears a conserved cysteine poised to nucleophilically attack the activated aminoacyl bond of glutamyl-tRNA.
Subsequently, the thioester intermediate is reduced to the product glutamate-1-semialdehyde via hydride transfer from NADPH
supplied by the second domain. A structure-based sequence alignment indicates that catalytically essential amino acids are
conserved throughout all GluTRs. Thus the catalytic mechanism derived for M. kandleri is common to all including plant GluTRs. Mutations described to influence the catalytic efficiency of the barley enzyme can
therefore be explained.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
4.
Tetratricopeptide repeat domain 9 (TTC9) mRNA was drastically up-regulated by progesterone in progesterone receptor-transfected breast cancer cells MDA-MB-231. This up-regulation is coupled with progesterone-mediated growth inhibition and induction of focal adhesion. We have generated mouse polyclonal antibody against a predicted 222 aa TTC9 protein and identified a 25 kDa TTC9 protein that is widely expressed in human tissues, with the highest expression in the brain. Immunostaining and cell fractionation studies revealed that TTC9 is predominantly localized to the endoplasmic reticulum. The level of TTC9 protein in MCF-7 cells is regulated by various factors and chemical reagents including estrogen, progesterone, growth factors, ICI182,780, and p38 kinase inhibitor SB203580. Growth factor-induced TTC9 protein expression was inhibited by estrogen and abolished by ERK inhibitor PD98059. Though the function of TTC9 is not yet clear, the susceptibility of its protein level to biological and chemical agents suggests that TTC9 is a biologically significant protein. 相似文献
5.
Many proteins contain a thioredoxin (Trx)-like domain fused with one or more partner domains that diversify protein function by the modular construction of new molecules. The Escherichia coli protein YbbN is a Trx-like protein that contains a C-terminal domain with low homology to tetratricopeptide repeat motifs. YbbN has been proposed to act as a chaperone or co-chaperone that aids in heat stress response and DNA synthesis. We report the crystal structure of YbbN, which is an elongated molecule with a mobile Trx domain and four atypical tetratricopeptide repeat motifs. The Trx domain lacks a canonical CXXC active site architecture and is not a functional oxidoreductase. A variety of proteins in E. coli interact with YbbN, including multiple ribosomal protein subunits and a strong interaction with GroEL. YbbN acts as a mild inhibitor of GroESL chaperonin function and ATPase activity, suggesting that it is a negative regulator of the GroESL system. Combined with previous observations that YbbN enhances the DnaK-DnaJ-GrpE chaperone system, we propose that YbbN coordinately regulates the activities of these two prokaryotic chaperones, thereby helping to direct client protein traffic initially to DnaK. Therefore, YbbN may play a role in integrating the activities of different chaperone pathways in E. coli and related bacteria. 相似文献
6.
7.
Pekkala M Hieta R Bergmann U Kivirikko KI Wierenga RK Myllyharju J 《The Journal of biological chemistry》2004,279(50):52255-52261
Collagen prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in -X-Pro-Gly-sequences and have an essential role in collagen synthesis. The vertebrate enzymes are alpha2beta2 tetramers in which the catalytic alpha-subunits contain separate peptide-substrate-binding and catalytic domains. We report on the crystal structure of the peptide-substrate-binding domain of the human type I enzyme refined at 2.3 A resolution. It was found to belong to a family of tetratricopeptide repeat domains that are involved in many protein-protein interactions and consist of five alpha-helices forming two tetratricopeptide repeat motifs plus the solvating helix. A prominent feature of its concave surface is a deep groove lined by tyrosines, a putative binding site for proline-rich Tripeptides. Solvent-exposed side chains of three of the tyrosines have a repeat distance similar to that of a poly-L-proline type II helix. The aromatic surface ends at one of the tyrosines, where the groove curves almost 90 degrees away from the linear arrangement of the three tyrosine side chains, possibly inducing a bent conformation in the bound peptide. This finding is consistent with previous suggestions by others that a minimal structural requirement for proline 4-hydroxylation may be a sequence in the poly-L-proline type II conformation followed by a beta-turn in the Pro-Gly segment. Site-directed mutagenesis indicated that none of the tyrosines was critical for tetramer assembly, whereas most of them were critical for the binding of a peptide substrate and inhibitor both to the domain and the alpha2beta2 enzyme tetramer. 相似文献
8.
Goslings D Meskauskiene R Kim C Lee KP Nater M Apel K 《The Plant journal : for cell and molecular biology》2004,40(6):957-967
The regulation of tetrapyrrole biosynthesis in higher plants has been attributed to metabolic feedback inhibition of Glu tRNA reductase by heme. Recently, another negative regulator of tetrapyrrole biosynthesis has been discovered, the FLU protein. During an extensive second site screen of mutagenized flu seedlings a suppressor of flu, ulf3, was identified that is allelic to hy1 and encodes a heme oxygenase. Increased levels of heme in the hy1 mutant have been implicated with inhibiting Glu tRNA reductase and suppressing the synthesis of delta-aminolevulinic acid (ALA) and Pchlide accumulation. When combined with hy1 or ulf3 upregulation of ALA synthesis and overaccumulation of protochlorophyllide in the flu mutants were severely suppressed supporting the notion that heme antagonizes the effect of the flu mutation by inhibiting Glu tRNA reductase independently of FLU. The coiled-coil domain at the C-terminal end of Glu tRNA reductase interacts with FLU, whereas the N-terminal site of Glu tRNA reductase that is necessary for the inhibition of the enzyme by heme is not required for this interaction. The interaction with FLU is specific for the Glu tRNA reductase encoded by HEMA1 that is expressed in photosynthetically active tissues. FLU seems to be part of a second regulatory circuit that controls chlorophyll biosynthesis by interacting directly with Glu tRNA reductase not only in etiolated seedlings but also in light-adapted green plants. 相似文献
9.
Takabayashi S Iwashita S Hirashima T Katoh H 《Experimental biology and medicine (Maywood, N.J.)》2007,232(5):695-699
We carried out molecular analyses of the novel flaky skin mutation, Ttc7(fsn-Jic )(a synonym for fsn(Jic)), which we found in a previous study. It was revealed that this mutation involved a genomic in-frame deletion including exons 9 and 10 of the Ttc7 gene, and that the genomic deletion in Ttc7 (fsn-Jic )may disrupt the tetratricopeptide repeat-2B domain of the TTC7 protein. Based on a comparison of three Ttc7 mutations, including Ttc7(fsn-J )(a synonym for fsn) and Ttc7(fsn-hea )(a synonym for hea), it was suggested that either exon 9 or exon 10 or both may play a more important role than the other exons of the Ttc7 gene. Ttc7 gene expression analyses using Northern blotting revealed that Ttc7 mRNA is expressed in 11 tissues, except muscle. In conclusion, we confirmed that the Ttc7 (fsn-Jic )mutation, as well as the Ttc7(fsn-J )and Ttc7 (fsn-hea )mutations, is responsible for abnormal phenotypes observed in various tissues of mice with the flaky skin mutation. 相似文献
10.
Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity 总被引:6,自引:0,他引:6
The abundant and dynamic post-translational modification of nuclear and cytosolic proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc-transferase (OGT). Recently, we reported the identification of a novel family of OGT-interacting proteins (OIPs) that interact strongly with the tetratricopeptide repeat (TPR) domain of OGT (Iyer, S. P., Akimoto, Y., and Hart, G. W. (2003) J. Biol. Chem. 278, 5399-5409). Members of this family are modified by O-GlcNAc and are excellent substrates of OGT. Here, we further investigated the role of the TPR domain in the O-GlcNAcylation of OIP106, one of the members of this OIP family. Using N-terminal deletions, we first identified the region of OIP106 that binds OGT, termed the OGT-interacting domain (OID). Deletion analysis indicated that TPRs 2-6 of OGT interact with the OID of OIP106. The apparent Km of OGT for the OID of OIP106 is 3.35 microm. Unlike small peptide substrates, glycosylation of the OID was dependent upon its interaction with the first 6 TPRs of OGT. Furthermore, the isolated TPR domain of OGT competitively inhibited glycosylation of the OID protein, but did not inhibit glycosylation of a 12-amino acid casein kinase II peptide substrate, providing kinetic evidence for the role of the TPR domain as a protein substrate docking site. Additionally, both the OID of OIP106 and nucleoporin p62 competed with each other for glycosylation by OGT. These studies support the model that the catalytic subunit of OGT achieves both high specificity and a remarkable diversity of substrates by complexing with a variety of targeting proteins via its TPR protein-protein interaction domains. 相似文献
11.
AGS3, a 650-amino acid protein encoded by an approximately 4-kilobase (kb) mRNA enriched in rat brain, is a Galpha(i)/Galpha(t)-binding protein that competes with Gbetagamma for interaction with Galpha(GDP) and acts as a guanine nucleotide dissociation inhibitor for heterotrimeric G-proteins. An approximately 2-kb AGS3 mRNA (AGS3-SHORT) is enriched in rat and human heart. We characterized the heart-enriched mRNA, identified the encoded protein, and determined its ability to interact with and regulate the guanine nucleotide-binding properties of G-proteins. Screening of a rat heart cDNA library, 5'-rapid amplification of cDNA ends, and RNase protection assays identified two populations of cDNAs (1979 and 2134 nucleotides plus the polyadenylation site) that diverged from the larger 4-kb mRNA (AGS3-LONG) in the middle of the protein coding region. Transfection of COS-7 cells with AGS3-SHORT cDNAs resulted in the expression of a major immunoreactive AGS3 polypeptide (M(r) approximately 23,000) with a translational start site at Met(495) of AGS3-LONG. Immunoblots indicated the expression of the M(r) approximately 23,000 polypeptide in rat heart. Glutathione S-transferase-AGS3-SHORT selectively interacted with the GDP-bound versus guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-bound conformation of Galpha(i2) and inhibited GTPgammaS binding to Galpha(i2). Protein interaction assays with glutathione S-transferase-AGS3-SHORT and heart lysates indicated interaction of AGS3-SHORT with Galpha(i1/2) and Galpha(i3), but not Galpha(s) or Galpha(q). Immunofluorescent imaging and subcellular fractionation following transient expression of AGS3-SHORT and AGS3-LONG in COS-7 and Chinese hamster ovary cells indicated distinct subcellular distributions of the two forms of AGS3. Thus, AGS3 exists as a short and long form, both of which apparently stabilize the GDP-bound conformation of Galpha(i), but which differ in their tissue distribution and trafficking within the cell. 相似文献
12.
BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat 总被引:10,自引:2,他引:8
Sylvie Albert Michel Delseny Martine Devic 《The Plant journal : for cell and molecular biology》1997,11(2):289-299
A mutant of Arabidopsis that accumulates a high level of red pigments within the seed coat has been isolated from a population of T-DNA-transformed plants. Genetic analysis revealed that the mutation is recessive and affects maternal seed tissues only. Due to the color of the immature seeds, this mutation was named banyuls ( ban ). Pigments accumulated continuously from early seed development to the desiccation stage in the seed coat of the mutant. The phenotype of the double mutant banyuls/transparent testa confirmed the flavonoid nature of the pigments and enabled assignment of the regulatory TT ( Transparent Testa ) genes to two groups according to their epistatic relationship to ban . The flavonoid content of germinated ban and wild-type seedlings was similar. Plants harbouring the ban mutation had a normal formation of trichomes and root hairs and were not affected in their responses to light. The seeds of ban plants exhibited reduced germination compared to wild-type which may be a direct consequence of the high level of pigments. These results suggest that BANYULS functions as a negative regulator of flavonoid biosynthesis that prevents accumulation of pigments in the seed coat during early embryogenesis in Arabidopsis . 相似文献
13.
14.
The formation of delta-aminolevulinic acid, the first committed precursor in porphyrin biosynthesis, occurs in certain bacteria and in the chloroplasts of plants and algae in a three-step, tRNA-dependent transformation of glutamate. Glutamyl-tRNA reductase, the second enzyme of this pathway, reduces the activated carboxyl group of glutamyl-tRNA (Glu-tRNA) in the presence of NADPH and releases glutamate 1-semialdehyde (GSA). We have purified Glu-tRNA reductase from Chlamydomonas reinhardtii by employing six different chromatographic separations. The apparent molecular mass of the protein when analyzed under both denaturing (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation on glycerol gradients) was 130,000 Da; this indicates that the active enzyme is a monomer. In the presence of NADPH Glu-tRNA reductase catalyzed the reduction to GSA of glutamate acylated to the homologous tRNA. Thus, the reductase alone is sufficient for conversion of Glu-tRNA to GSA. In the absence of NADPH, a stable complex of Glu-tRNA reductase with Glu-tRNA can be isolated. 相似文献
15.
Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA 总被引:15,自引:0,他引:15
An RNA moiety has been shown to be involved in the conversion of Glu to delta-aminolevulinic acid (ALA), the first committed intermediate of the chlorophyll pathway. We now have evidence suggesting that in Chlamydomonas, the first reaction for converting Glu to ALA is the aminoacylation of Glu to a Glu-specific tRNA. The Glu-tRNA thus formed could be the substrate for Glu-1-semialdehyde synthesis catalyzed by a postulated dehydrogenase. Glu-1-semialdehyde can be converted to ALA by an aminotransferase. Of the three reactions converting Glu to ALA, only the second reaction, catalyzed by a postulated dehydrogenase, is sensitive to inhibition by heme (a known inhibitor of ALA synthesis). We think the regulated enzyme of ALA synthesis is the postulated dehydrogenase. It is postulated that in the chloroplast of Chlamydomonas, the synthesis of ALA and the synthesis of proteins may share a common pool of glutamyl-tRNA. 相似文献
16.
FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs. 相似文献
17.
C Sinclair C Borchers C Parker K Tomer H Charbonneau S Rossie 《The Journal of biological chemistry》1999,274(33):23666-23672
Protein Ser/Thr phosphatase 5 is a 58-kDa protein containing a catalytic domain structurally related to the catalytic subunits of protein phosphatases 1, 2A, and 2B and an extended N-terminal domain with three tetratricopeptide repeats. The activity of this enzyme is stimulated 4-14-fold in vitro by polyunsaturated fatty acids and anionic phospholipids. The structural basis for lipid activation of protein phosphatase 5 was examined by limited proteolysis and site-directed mutagenesis. Trypsinolysis removed the tetratricopeptide repeat domain and increased activity to approximately half that of lipid-stimulated, full-length enzyme. Subtilisin removed the tetratricopeptide repeat domain and 10 residues from the C terminus, creating a catalytic fragment with activity that was equal to or greater than that of lipid-stimulated, full-length enzyme. Catalytic fragments generated by proteolysis were no longer stimulated by lipid, and degradation of the tetratricopeptide repeat domain was decreased by association with lipid. A truncated mutant missing 13 C-terminal residues was also insensitive to lipid and was as active as full-length, lipid-stimulated enzyme. These results suggest that the C-terminal and N-terminal domain act in a coordinated manner to suppress the activity of protein phosphatase 5 and mediate its activation by lipid. These regions may be targets for the regulation of protein phosphatase 5 activity in vivo. 相似文献
18.
Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90. 总被引:6,自引:0,他引:6
L C Russell S R Whitt M S Chen M Chinkers 《The Journal of biological chemistry》1999,274(29):20060-20063
The sequential binding of heat shock protein 90 (hsp90) to a series of tetratricopeptide repeat (TPR) proteins is critical to its function as a molecular chaperone. We have used site-directed mutagenesis to clarify the structural basis for the binding of hsp90 to the TPR domain of phosphoprotein phosphatase 5 (PP5). This TPR domain was chosen for study because its three-dimensional structure is known. We examined co-immunoprecipitation of hsp90 with wild type and mutant TPR constructs from transfected cells. Only mutations located on one face of the TPR domain affected hsp90 binding. This allowed the identification of a binding groove. Three basic residues that are highly conserved in hsp90-binding TPR proteins extend prominently into this groove. Lys-97 and Arg-101 were absolutely required for hsp90 binding, while mutation of Arg-74 diminished, but did not abrogate, hsp90 binding. Mutation of Lys-32, another conserved basic residue in the binding groove, also blocked hsp90 binding. The TPR domain of PP5 bound specifically to a 12-kDa C-terminal fragment of hsp90. This binding was reduced by mutation of acidic residues in the hsp90 fragment. These data suggest conservation, among hsp90-binding TPR proteins, of a binding groove containing basic residues that interact with acidic residues near the C terminus of hsp90. 相似文献
19.
20.
Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana 总被引:5,自引:0,他引:5
Thiery L Leprince AS Lefebvre D Ghars MA Debarbieux E Savouré A 《The Journal of biological chemistry》2004,279(15):14812-14818
Accumulation of proline has been observed in a large number of plant species in response to drought and salt stresses, suggesting a key role of this amino acid in plant stress adaptation. Upstream components of the proline biosynthesis signal transduction pathways are still poorly defined. We provide experimental evidence that phospholipase D (PLD) is involved in the regulation of proline metabolism in Arabidopsis thaliana. The application of primary butyl alcohols, which divert part of PLD-derived phosphatidic acid by transphosphatidylation, stimulated proline biosynthesis even without hyperosmotic constraints. Moreover, application of primary butyl alcohols enhanced the proline responsiveness of seedlings to mild hyperosmotic stress. These data indicate that some PLDs are negative regulators of proline biosynthesis and that plants present a higher proline responsiveness to hyperosmotic stress when this regulator is abolished. We clearly demonstrate that PLD signaling for proline biosynthesis is similar to RD29A gene expression and different from the abscisic acid-dependent RAB18 gene expression. Our data reveal that PLDs play positive and negative roles in hyperosmotic stress signal transduction in plants, contributing to a precise regulation of ion homeostasis and plant salt tolerance. 相似文献