首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Co-metabolism of fluorobenzoates by natural microbial populations.   总被引:1,自引:0,他引:1       下载免费PDF全文
Co-metabolic degradation of monofluorobenzoates was carried out by a mixed soil population in a basal salts medium. The monofluorobenzoates did not support growth of microorganisms but were shown to be subject to ring cleavage as a result of microbial activity. Rate of ring cleavage was increased by use of the co-substrate enrichment technique using glucose as the co-substrate. Results indicate that the monofluorobenzoates were subject to an initial co-metabolic attack with glucose, providing the energy necessary for co-metabolism to proceed to a point where complete metabolism became possible.  相似文献   

2.
3.
Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.  相似文献   

4.
The kinetics of microbial growth and the biodegradation of methanol and toluene in (a) biofilters (BFs), and (b) biotrickling filters (BTFs), packed with inert materials, has been studied and analyzed. The specific growth rate, mu, for the treatment of methanol was 0.037h(-1) for a wide range of operating conditions. In the BF, mu was found to be a function of the methanol and toluene concentrations in the biofilm. In the BF used for treating methanol, mu was found to be affected by (1) the nitrogen concentration present in the nutrient solution, and (2) the kind of packing material employed. The kinetics of the methanol and toluene biodegradations were also analyzed using "mixed order" models. A Michaelis-Menten model type provided a good fit for the elimination capacity (EC) of the BTF treating methanol, while a Haldane model type provided a good fit to the EC of the BF treating methanol and toluene. The carbon dioxide production rate was related to the packed bed temperature and the content of the volatile solids within the biofilm. For the BF, the ratio of temperature/carbon dioxide production rate (PCO(2)) was 0.024 degrees C per unit of PCO(2), and for the BTF it was 0.15 degrees C per unit of PCO(2).  相似文献   

5.
Summary Results are presented comparing the extent of solubilization/biodegradation of whole yeast cells by mixed thermophilic bacterial cultures under conditions of oxygen, excess and oxygen limitation. The process was most effective at a low dissolved oxygen concentration as suggested by solids removal data and by the production of often considerable quantities of carboxylic acids. The temperature optimum was also investigated and, under oxygen limited conditions, the most consistant results were obtained for operation at 65°C reflecting the true thermophilic nature of the process microbes. An operating temperature of 70°C probably exceeded the optimum for effective functioning of the thermophilic microbes and resulted in a less efficient process, whilst an operating temperature of 60°C was intermediate with respect to its effectiveness.  相似文献   

6.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), commonly known as dioxins (PCDD/Fs), are toxic environmental pollutants formed from various sources. Elimination of these pollutants from the environment is a difficult task due to their persistent and ubiquitous nature. Removal of dioxins by biological degradation (biodegradation) is considered a feasible method as an alternative to other expensive physicochemical approaches. Biodegradation of dioxins has been extensively studied in several microorganisms, and details concerning biodiversity, biodegradation, biochemistry and molecular biology of this process have accumulated during the last three decades. There are several microbial mechanisms responsible for biodegradation of dioxins, including oxidative degradation by dioxygenase-containing aerobic bacteria, bacterial and fungal cytochrome P-450, fungal lignolytic enzymes, reductive dechlorination by anaerobic bacteria, and direct ether ring cleavage by fungi containing etherase-like enzymes. Many attempts have been made to bioremediate PCDD/Fs using this basic knowledge of microbial dioxin degradation. This review emphasizes the present knowledge and recent advancements in the microbial biotransformation, biodegradation and bioremediation of dioxins.  相似文献   

7.
8.
Co-metabolism of the Ixodicide Amitraz   总被引:1,自引:1,他引:0  
Bacteria capable of degrading the ixodicide amitraz were isolated from cattle dipping tanks by the enrichment culture technique. The conditions for amitraz degradation were characterized and the bacteria identified as Pseudomonas and Achromobacter spp. The bacteria degraded amitraz without utilizing the ixodicide as a substrate or energy source. The degradation of amitraz by bacteria is an example of co-metabolism with yeast extract or an ingredient of yeast extract acting as the co-metabolite. Bacteria were unable to degrade amitraz at pH >11.5. Although bacteria can degrade amitraz, it is giving excellent tick control under practical field conditions.  相似文献   

9.
10.
11.
Prediction of microbial metabolism is important for annotating genome sequences and for understanding the fate of chemicals in the environment. A metabolic pathway prediction system (PPS) has been developed that is freely available on the world wide web (), recognizes the organic functional groups found in a compound, and predicts transformations based on metabolic rules. These rules are designed largely by examining reactions catalogued in the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) and are generalized based on metabolic logic. The predictive accuracy of the PPS was tested: (1) using a 113-member set of compounds found in the database, (2) against a set of compounds whose metabolism was predicted by human experts, and (3) for consistency with experimental microbial growth studies. First, the system correctly predicted known metabolism for 111 of the 113 compounds containing C and H, O, N, S, P and/or halides that initiate existing pathways in the database, and also correctly predicted 410 of the 569 known pathway branches for these compounds. Second, computer predictions were compared to predictions by human experts for biodegradation of six compounds whose metabolism was not described in the literature. Third, the system predicted reactions liberating ammonia from three organonitrogen compounds, consistent with laboratory experiments showing that each compound served as the sole nitrogen source supporting microbial growth. The rule-based nature of the PPS makes it transparent, expandable, and adaptable.  相似文献   

12.
13.
14.
【背景】喹啉是一种典型的含氮杂环污染物,广泛存在于焦化废水,具有致畸、致癌、致突变作用,易通过水体污染环境。微生物技术因其绿色高效的特点,被认为是喹啉废水污染最有前景的修复手段之一。【目的】筛选得到一组高效喹啉降解复合菌群,实现含喹啉废水的高效工业化处理。【方法】使用逐级递增驯化法从焦化废水厂污泥中筛选出一组高效喹啉降解复合菌群,结合形态学观察并通过酶活测定、底物广谱性研究,完成对该复合菌群的初探。然后将该复合菌群的培养pH、温度、转速、装液量、接菌量、不同浓度外加碳氮源进行单因素优化,结合优化结果以喹啉降解率为目标进行响应面优化,并通过降解动力学研究喹啉对复合菌群降解行为的影响。【结果】分离出可30 h降解1 500 mg/L喹啉的高效复合菌群,可以降解多种含氮杂环化合物;响应面优化结果表明,当pH、温度、转速分别为6.8、30 ℃、200 r/min时,降解率最高达66%;降解动力学分析发现,当喹啉浓度为1 154 mg/L时,比降解率最大高达60.0 mg/(L·h)。【结论】该复合菌群具有高效喹啉降解能力和底物降解广谱性,为微生物高效处理含喹啉废水的工业化处理提供了良好基础。  相似文献   

15.
In recent works, microbial consortia consisting of various bacteria and fungi exhibited a biodegradation performance superior to single microbial strains. A highly efficient biodegradation of synthetic dyes, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other organic pollutants can be achieved by mixed microbial cultures that combine degradative enzyme activities inherent to individual consortium members. This review summarizes biodegradation results obtained with defined microbial cocultures and real microbial consortia. The necessity of using a proper strategy for the microbial consortium development and optimization was clearly demonstrated. Molecular genetic and proteomic techniques have revolutionized the study of microbial communities, and techniques such as the denaturing gradient gel electrophoresis, rRNA sequencing, and metaproteomics have been used to identify consortium members and to study microbial population dynamics. These analyses could help to further enhance and optimize the natural activities of mixed microbial cultures.  相似文献   

16.
Summary Biodegradation rates of 12 phenols were measured with respect to acclimated microbial biomass ranging from 2.3×104 to 2.3×108 cells/l. Rates ranged between 0.02 mg l–1 day–1 for 1.6 mg/lp-bromophenol exposed to 2.3×104 cells/l and 1.41 mg l–1 day–1 for 3.2 mg/lp-methylphenol exposed to 2.3×108 cells/l. Generally, rates for all phenols were first-order in substrate concentration and zero-order in biomass concentration. Bromophenol biodegradation was preceded by lag periods of varying lengths and to a small extent the rate was dependent on microbial biomass. Results from this study suggest chemical biodegradation generally exhibits pseudo-first-and occasionally, second-order kinetics.  相似文献   

17.
J Shen  R Bartha 《Applied microbiology》1996,62(7):2411-2415
Biodegradability screening tests of soil commonly measure 14CO2 evolution from radiolabeled test compounds, and glucose has often served as a positive control. When constant amounts of radiolabel were added to soil in combination with increasing amounts of unlabeled substrates, glucose and some related hexoses behaved in an anomalous manner. In contrast to that of formate, benzoate, n-hexadecane, or bis(2-ethylhexyl) phthalate, dilution of glucose radiocarbon with unlabeled glucose increased rather than decreased the rate and extent of 14CO2 evolution. [14C]glucose incorporation into biomass and Vmax values were consistent with the interpretation that application of relatively high concentrations of glucose to soil shifts the balance of the soil microbial community from the autochthonous (humus-degrading) to the zymogeneous (opportunistic) segment. The higher growth and turnover rates that define zymogeneous microorganisms, combined with a lower level of carbon incorporation into their biomass, result in the evolution of disproportionate percentages of 14CO2. When used as positive controls, glucose and related hexoses may raise the expectations for percent 14CO2 evolution to levels that are not realistic for other biodegradable compounds.  相似文献   

18.
Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a "fingerprint" which is characteristic of biochemical substances. In this study, Pseudomonas putida NCIMB 9869 was grown with either 3,5-xylenol or m-cresol as the sole carbon source, each inducing different metabolic pathways for m-cresol biotransformation. FT-IR spectroscopy was capable of differentiating both induced cultures of P. putida NCIMB 9869 as well as the resulting biotransformation product mixtures. FT-IR spectral analysis indicated that carboxylic acids were key chemicals responsible for distinguishing the products of the two catabolic pathways. Gas chromatography-mass spectrometry (GC-MS) was performed to validate the FT-IR analysis, indicating that two carboxylic acids, 3-hydroxybenzoic acid and 2,5-dihydroxybenzoic acid, were present as m-cresol biotransformation products from 3,5-xylenol-grown cells, but were absent in m-cresol-grown cells. The ability to use FT-IR to rapidly distinguish between biotransformation product mixtures as well as differentially induced bacterial strains suggests this approach might be a valuable tool for screening large biotransformation assays for novel products and metabolic mutants.  相似文献   

19.
We present a method for selecting entire microbial ecosystems for bioremediation and other practical purposes. A population of ecosystems is established in the laboratory, each ecosystem is measured for a desired property (in our case, degradation of the environmental pollutant 3-chloroaniline), and the best ecosystems are used as 'parents' to inoculate a new generation of 'offspring' ecosystems. Over many generations of variation and selection, the ecosystems become increasingly well adapted to produce the desired property. The procedure is similar to standard artificial selection experiments except that whole ecosystems, rather than single individuals, are the units of selection. The procedure can also be understood in terms of complex system theory as a way of searching a vast combinatorial space (many thousands of microbial species and many thousands of genes within species) for combinations that are especially good at producing the desired property. Ecosystem-level selection can be performed without any specific knowledge of the species that comprise the ecosystems and can select ensembles of species that would be difficult to discover with more reductionistic methods. Once a 'designer ecosystem' has been created by ecosystem-level selection, reductionistic methods can be used to identify the component species and to discover how they interact to produce the desired effect.  相似文献   

20.
Microbial biodegradation of environmental pollutants is a field of growing importance because of its potential use in bioremediation and biocatalysis. We have studied the characteristics of the global biodegradation network that is brought about by all the known chemical reactions that are implicated in this process, regardless of their microbial hosts. This combination produces an efficient and integrated suprametabolism, with properties similar to those that define metabolic networks in single organisms. The characteristics of this network support an evolutionary scenario in which the reactions evolved outwards from the central metabolism. The properties of the global biodegradation network have implications for predicting the fate of current and future environmental pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号