首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The twitcher mutant mouse, the animal model of Krabbe disease (human globoid cell leukodystrophy), is characterized by apparent deficiency of galactosylceramide beta-galactosidase activity. Saposin A and C, the heat-stable small sphingolipid activator glycoproteins, stimulate the activity of galactosylceramide beta-galactosidase as well as glucosylceramide beta-glucoside. The role of these saposins in the twitcher mutation was investigated. Boiled supernatant fractions, which contained saposins, were prepared from homogenates of twitcher brain, liver, kidney, and spleen. These preparations showed an almost identical effect on the activity of purified glucosylceramide beta-glucosidase (measured by hydrolysis of 4-methylumbelliferyl-beta-glucoside) with similar preparations from control tissues. The effect on the activity of galactosylceramide beta-galactosidase as well as 4-methylumbelliferyl-beta-glucoside beta-glucosidase in the twitcher brain and liver homogenates by authentic saposin A and C was similar to that in control tissues. These results suggest that the twitcher mutation does not affect the concentrations of saposin A or C or their interaction with galactosylceramide beta-galactosidase.  相似文献   

2.
Abstract— Purified oligodendroglia isolated from bovine brain white matter were found to contain, in addition to galactosylceramide, sulfatide and sphingomyelin, significant quantities of glucosylcerai-mide, dihexosylceramide and esterified galactosylceramide. These sphingolipids were isolated and quan-titated and their fatty acid and long chain base patterns compared with those from sphingolipids isolated from bovine myelin, white matter and gray matter.
The minor glycosphingolipids, glucosylceramide, dihexosylceramide and esterified galactosylceramide, constituted a higher percentage of glial lipids than of myelin lipids. Glucosylceramide accounted for 12% of the total glial monohexosylceramide fraction and 0.8% of total lipids; dihexosylceramide was 0.9% of total glial lipids. Both of these lipids had small quantities of α-hydroxy fatty acids. The unsubstituted fatty acids of glucosylceramide were mostly short chain (16 and 18 carbons) and were different from those of the dihexosylceramides which were a mixture of short and long chain. The hydroxy acids of each of these lipids were, however, similar and resembled those of galactosylceramide.
The fatty acid patterns of galactosylceramide, sulfatide and sphingomyelin from glial cells resembled those of the corresponding lipids from myelin and white matter. The amide-linked acids of esterified galactosylceramide contained both unsubstituted and α-hydroxy chains. Their patterns were not identical to those of galactosylceramide, but were similar in all brain fractions.
With the exception of sphingomyelin and dihexosylceramide, which contained small amounts of C20-sphingosine, all sphingolipids analyzed contained mostly sphingosine and dihydrosphingosine.
We conclude that the distribution of sphingolipids in the oligodendroglia is characteristic, but the lipophilic residues of these lipids are not cell-specific.  相似文献   

3.
Mice that are genetically deficient in UDP-galactose: ceramide galactosyltransferase are unable to synthesize galactosylceramide. Consequently, sulfatide, which can be synthesized only by sulfation of galactosylceramide, is also totally absent in affected mouse brain. -Hydroxy fatty acid-containing glucosylceramide partially replaces the missing galactosylceramide. A substantial proportion of sphingomyelin, which normally contains only non-hydroxy fatty acids, also contains -hydroxy fatty acids. These findings indicate that -hydroxy fatty acid-containing ceramide normally present only in galactosylceramide and sulfatide is diverted to other compounds because they cannot be synthesized into galactosylceramide due to the lack of the galactosyltransferase. We have examined brain gangliosides in order to determine if -hydroxy fatty acid-containing glucosylceramide present in an abnormally high concentration is also incorporated into gangliosides. The brain ganglioside composition, however, is entirely normal in both the total amount and molecular distribution in these mice. One feasible explanation is that UDP-galactose: glucosylceramide galactosyltransferase does not recognize -hydroxy fatty acid-containing glucosylceramide as acceptor. This analytical finding is consistent with the relative sparing of gray matter in the affected mice and provides an insight into sphingolipid metabolism in the mouse brain.  相似文献   

4.
Members of the glycolipid transfer protein superfamily (GLTP) are found from animals and fungi to plants and red micro-alga. Eukaryotes that encode the glucosylceramide synthase responsible for the synthesis of glucosylceramide, the precursor for most glycosphingolipids, also produce GLTPs. Cells that does not synthesize glucosylceramide neither express GLTPs. Based on this genetic relationship there must be a strong correlation between the synthesis of glucosylceramide and GLTPs. To regulate the levels of glycolipids we have used inhibitors of intracellular trafficking, glycosphingolipid synthesis and degradation, and small interfering RNA to down-regulate the activity of glucosylceramide synthase activity. We found that GLTP expression, both at the mRNA and protein levels, is elevated in cells that accumulate glucosylceramide. Monensin and brefeldin A block intracellular vesicular transport mechanisms. Brefeldin A treatment leads to accumulation of newly synthesized glucosylceramide, galactosylceramide and lactosylceramide in a fused endoplasmic reticulum-Golgi complex. On the other hand, inhibiting glycosphingolipid degradation with conduritol-B-epoxide, that generates glucosylceramide accumulation in the lysosomes, did not affect the levels of GLTP. However, glycosphingolipid synthesis inhibitors like PDMP, NB-DNJ and myriocin, all decreased glucosylceramide and GLTP below normal levels. We also found that an 80% loss of glucosylceramide due to glucosylceramide synthase knockdown resulted in a significant reduction in the expression of GLTP. We show here that interfering with membrane trafficking events and simple neutral glycosphingolipid synthesis will affect the expression of GLTP. We postulate that a change in the glucosylceramide balance causes a response in the GLTP expression, and put forward that GLTP might play a role in lipid directing and sensing of glucosylceramide at the ER-Golgi interface.  相似文献   

5.
The sulfatide fluorescent analogue N-lissamine rhodaminyl-(12-aminododecanoyl) cerebroside 3-sulfate was administered in the form of albumin complex to normal human skin fibroblasts and its metabolic fate was investigated. Ceramide, galactosylceramide, glucosylceramide, sphingomyelin and free acid, all containing the fluorophore lissamine rhodamine, have been synthesized as reference standards for the identification of the metabolic products. Ceramide appeared to be the main metabolic product present both in cell extract and medium, followed by galactosylceramide and sphingomyelin. Fluorescence microscopy of cells showed a marked perinuclear fluorescence.  相似文献   

6.
Confluent monolayers of MDCK (Madin-Darby canine kidney) cells provide a widely used model system for studying epithelial cell polarity. We determined the polarity of epithelial cell plasma membrane glycolipids and sulfated lipids by analyzing the lipids released from both sides of monolayers of metabolically labeled MDCK cells. These lipids were released either as endogenously shed material or in budding viruses. All of the glycolipids were detected in both the apical and basolateral domains of the plasma membrane. However, galactosylceramide was more basally oriented than any of the other glycolipids; thus, the ratio of glucosylceramide to galactosylceramide was more than twice as great in the apical domain as in the basolateral domain. A sulfated sterol, which comigrated with cholesterol sulfate, was released in a more basally polarized manner than any of the glycolipids. These results indicate the presence of mechanisms which can produce different degrees of polarity for specific lipids in polarized epithelial cells.  相似文献   

7.
An endogenous, heat-stable and pronase-sensitive activator for enzymatic hydrolysis of glucosylceramide was detected in the crude lysosome-mitochondria fraction of human placenta. Its properties differ distinctly in several important respects from those of the previously described glucosylceramidase activator. The activator reported here had no effect on crude glucosylceramidase with either glucosylceramide or 4-methylumbelliferyl-beta-D-glucopyranoside as the substrate in the presence of either sodium taurocholate or phosphatidylserine. On the contrary, glucosylceramide hydrolysis by the enzyme partially purified through Octyl-Sepharose 4B chromatography was stimulated by this activator 6-9-fold in the presence of either sodium taurocholate or phosphatidylserine. The Km for glucosylceramide in the presence of the activator was 1/3 of that without the activator. In the crude enzyme fraction, the activator was present in a 16-fold excess over the minimum amount necessary for full activation of the enzyme. Hydrolysis of the fluorogenic substrate by the post-Octyl-Sepharose enzyme, however, was not stimulated by the activator. Similarly, hydrolysis of galactosylceramide by galactosylceramidase obtained from the same Octyl-Sepharose chromatography was not stimulated. Our observations are consistent with the idea that glucosylceramidase is saturated by, or perhaps tightly associated with, this activator in the placenta and that they are dissociated by the Octyl-Sepharose chromatography. In fact, the properties of the combined post-Octyl-Sepharose enzyme and activator closely mimic those of the crude enzyme without added activator.  相似文献   

8.
The binding of pulmonary surfactant protein A (SP-A) to glycolipids was examined in the present study. The direct binding of SP-A on a thin-layer chromatogram was visualized using 125I-SP-A as a probe. 125I-SP-A bound to galactosylceramide and asialo-GM2, but failed to exhibit significant binding to GM1, GM2, asialo-GM1, sulfatide, and Forssman antigen. The study of 125I-SP-A binding to glycolipids coated onto microtiter wells also revealed that SP-A bound to galactosylceramide and asialo-GM2. SP-A bound to galactosylceramides with non-hydroxy or hydroxy fatty acids, but showed no binding to either glucosylceramide or galactosylsphingosine. Excess native SP-A competed with 125I-SP-A for the binding to asialo-GM2 and galactosylceramide. Specific antibody to rat SP-A inhibited 125I-SP-A binding to glycolipids. In spite of chelation of Ca2+ with EDTA or EGTA, SP-A retained a significant binding to glycolipids. Inclusion of excess monosaccharides in the binding buffer reduced the glycolipid binding of SP-A, but failed to achieve complete abolishment. The oligosaccharide isolated from asialo-GM2 is also effective at reducing 125I-SP-A binding to the solid-phase asialo-GM2. From these data, we conclude that SP-A binds to galactosylceramide and asialo-GM2, and that both saccharide and ceramide moieties in the glycolipid molecule are important for the binding of SP-A to glycolipids.  相似文献   

9.
We examined the uptake and intracellular transport of the fluorescent glucosylceramide analogue N-[5-(5,7-dimethyl BODIPYTM)-1-pentanoyl]- glucosyl sphingosine (C5-DMB-GlcCer) in human skin fibroblasts, and we compared its behavior to that of the corresponding fluorescent analogues of sphingomyelin, galactosylceramide, and lactosylceramide. All four fluorescent analogues were readily transferred from defatted BSA to the plasma membrane during incubation at 4 degrees C. When cells treated with C5-DMB-GlcCer were washed, warmed to 37 degrees C, and subsequently incubated with defatted BSA to remove fluorescent lipid at the cell surface, strong fluorescence was observed at the Golgi apparatus, as well as weaker labeling at the nuclear envelope and other intracellular membranes. Similar results were obtained with C5-DMB- galactosylceramide, except that labeling of the Golgi apparatus was weaker than with C5-DMB-GlcCer. Internalization of C5-DMB-GlcCer was not inhibited by various treatments, including ATP depletion or warming to 19 degrees C, and biochemical analysis demonstrated that the lipid was not metabolized during its internalization. However, accumulation of C5-DMB-GlcCer at the Golgi apparatus was reduced when cells were treated with a nonfluorescent analogue of glucosylceramide, suggesting that accumulation of C5-DMB-GlcCer at the Golgi apparatus was a saturable process. In contrast, cells treated with C5-DMB-analogues of sphingomyelin or lactosylceramide internalized the fluorescent lipid into a punctate pattern of fluorescence during warming at 37 degrees C, and this process was temperature and energy dependent. These results with C5-DMB-sphingomyelin and C5-DMB-lactosylceramide were analogous to those obtained with another fluorescent analogue of sphingomyelin in which labeling of endocytic vesicles and plasma membrane lipid recycling were documented (Koval, M., and R. E. Pagano. 1990. J. Cell Biol. 111:429-442). Incubation of perforated cells with C5-DMB- sphingomyelin resulted in prominent labeling of the nuclear envelope and other intracellular membranes, similar to the pattern observed with C5-DMB-GlcCer in intact cells. These observations are consistent with the transbilayer movement of fluorescent analogues of glucosylceramide and galactosylceramide at the plasma membrane and early endosomes of human skin fibroblasts, and suggest that both endocytic and nonendocytic pathways are used in the internalization of these lipids from the plasma membrane.  相似文献   

10.
Several studies have shown that ceramide (CER) glucosylation contributes to drug resistance in multidrug-resistant cells and that inhibition of glucosylceramide synthase sensitizes cells to various drug treatments. However, the role of glucosylceramide synthase has not been studied in drug-sensitive cancer cells. We have demonstrated previously that the anthracycline daunorubicin (DNR) rapidly induces interphasic apoptosis through neutral sphingomyelinase-mediated CER generation in human leukemic cell lines. We now report that inhibition of glucosylceramide synthase using d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) protected U937 and HL-60 cells from DNR-induced apoptosis. Moreover, blocking CER glucosylation did not lead to increased CER levels but to increased CER galactosylation. We also observed that pretreating cells with galactosylceramide (GalCER) significantly inhibited DNR-induced apoptosis. Finally, we show that GalCER-enriched lymphoblast cells (Krabbe's disease) were significantly more resistant to DNR- and cytosine arabinoside-induced apoptosis as compared with normal lymphoblasts, whereas glucosylceramide-enriched cells (Gaucher's disease) were more sensitive. In conclusion, this study suggests that sphingomyelin-derived CER in itself is not a second messenger but rather a precursor of both an apoptosis second messenger (GD3) and an apoptosis "protector" (GalCER).  相似文献   

11.
Abstract— Isolated neuronal cell bodies and astroglia of young (15–20-day-old) rat brains were both found to contain small concentrations of a variety of glycosphingolipids, including glucosylceramide, galactosylceramide, sulphatide, dihexosylceramide and gangliosides. These sphingolipids, plus sphingomyelin, were isolated, quantitated and their fatty acid and long chain base patterns determined. These data were compared to similar data obtained on these lipids isolated from whole brain and myelin of rats of the same age range. Glucosylceramide was found in an amount equal to galactosylceramide in neurons, and accounted for 35 per cent of the total monohexosylceramide in astroglia. Dihexosylceramide was present in nearly the same amount as sulphatide in both cell types. The sphingolipids of each cell type had characteristic fatty acid patterns. Generally the whole brain fatty acid patterns resembled those of astroglial lipids rather than neuronal lipids. In no case did the cell sphingolipid fatty acids resemble those of myelin. However, the galactosylceramide and sulphatides of both cells had unsubstituted and α-hydroxy acids, both of which had appreciable quantities of C24 acids. The ganglioside fatty acids of each cell type were similar and not unusual, but were quite different from those of glucosylceramide and dihexosylceramide; the latter having appreciable quantities of 16:0 and acids longer than 18:0. The ganglioside patterns of these cells were similar and only slightly different from that of whole brain. Long chain bases of sphingolipids were mainly C18-sphingosine in both cell types, and those of ganglioside and sphingomyelin contained small amounts of C20-sphingosine.  相似文献   

12.
We previously reported that the sulfatide (galactosylceramide I3-sulfate) may have contradictory functions, namely both coagulant and anticoagulant roles in vivo: sulfatide induced giant thrombi formation when injected into rats with vein ligation, whereas no thrombi were formed when sulfatide was injected into rats without vein ligation. Rather it prolonged bleeding time. To investigate the structural features of sulfatide for both functions, a synthetic sulfatide (galactosylceramide I6-sulfate) which does not occur naturally, cholesterol 3-sulfate and ganglioside GM4 were examined together with naturally occurring sulfatide. Both sulfatides and cholesterol 3-sulfate induced giant thrombi in the rats with vein ligation within ten minutes of injection, although cholesterol 3-sulfate exhibited weaker coagulant activity than the sulfatides. On the contrary, both sulfatides significantly prolonged bleeding time but cholesterol 3-sulfate barely prolonged it when injected without vein ligation. GM4 exhibited neither coagulant nor anticoagulant activity. These results suggested that sulfate moiety in the sulfatides is essential for coagulant activity and that galactose residue enhances the activity, whereas both galactose and sulfate residues seem to be important for anticoagulant activity. This is because the sulfatides possess both residues but GM4 possesses galactose without sulfate and cholesterol 3-sulfate possesses sulfate without galactose. We previously reported that the possible mechanism of anticoagulation by sulfatide was due to its binding to fibrinogen, thereby inhibiting the conversion to fibrin. In this paper we reveal that both sulfatides inhibited thrombin activity independent of heparin cofactor II, thus providing evidence of another anticoagulation mechanism for the sulfatides.  相似文献   

13.
We report here the molecular cloning and characterization of a glucocerebrosidase [EC 3.2.1.45] from Paenibacillus sp. TS12. The open reading frame of the glucocerebrosidase gene consisted of 2,493 bp nucleotides and encoded 831 amino acid residues. The enzyme exhibited no sequence similarity with a classical glucocerebrosidase belonging to glycoside hydrolase (GH) family 30, but rather showed significant similarity with GH family 3 beta-glucosidases from Clostridium thermocellum, Ruminococcus albus, and Aspergillus aculeateus. The recombinant enzyme, expressed in Escherichia coli BL21(DE3)pLysS, had a molecular weight of 90.7 kDa and hydrolyzed NBD-labeled glucosylceramide, but not galactosylceramide, GM1a or sphingomyelin. The enzyme was most active at pH 6.5, and its apparent Km and Vmax values for NBD-labeled glucosylceramide and p-nitrophenyl-beta-glucopyranoside were 223 microM and 1.60 micromol/min/mg of protein, and 593 microM and 112 micromol/min/mg of protein, respectively. Site-directed mutagenesis indicated that Asp-223 is an essential amino acid for the catalytic reaction and possibly functions a catalytic nucleophile, as in GH family 3 beta-glucosidases. This is the first report of the molecular cloning and characterization of a glucocerebrosidase from a procaryote.  相似文献   

14.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

15.
Glycolipids were purified from the total lipid extract of the testis or milt of a kind of puffer (Fugu rubripes rubripes) by adsorption column chromatography using silicic acid and magnesium silicate and by preparative silica gel TLC. The glycolipids were identified as glucosylceramide (116 mug/g wet tissue) and galactosylceramide 26.7 mug/g). Seminolipid, a sulfagalactolipid specific to mammalian testis was not detected, but the presence of a small amount of sulfatide (15.2 mug/g) was demonstrated. The long-chain bases of both cerebrosides were mainly C18-sphingenine, but in sulfatide, C20-sphingenine was more abundant than C18-sphingenine. In both cerebrosides and sulfatide, the fatty acid compositions were similar, with nervonic acid as the predominant component. Two species of gangliosides were also obtained and were identified as N-acetylgalactosaminyl(1 leads to 4)[N-acetylneuraminyl(2 leads to 3)]galactosyl(1leads to 4)glucosylceramide (59.8 mug/g) and N-acetylneuraminyl(2 leads to 3)galactosyl(1 leads to 4)N-acetylglucosaminyl(1 leads to 3)galactosyl(1 leads to 4)glucosylceramide (45.0 mug/g). The long-chain bases of the two gangliosides consisted of C18-spingenine and C20-sphingenine, and the major fatty acids were palmitic and stearic acids.  相似文献   

16.
The same or a very similar carbohydrate determinant, as represented by some sulfated, glucuronic acid-containing glycosphingolipids of human peripheral nerve, occurs on several adhesion molecules in the mammalian nervous system. In the present study, the occurrence of this epitope on glycoproteins and glycolipids of the fly, Calliphora vicina, was investigated by Western blot analysis and thin-layer chromatogram immunostaining. Several monoclonal antibodies recognizing an epitope on various neural cell adhesion molecules, designated L2 (334, 336, 349, and 412); the monoclonal antibody HNK-1 (recognizing an epitope on human natural killer cells); and a human IgM M-protein were found to react by Western blot analysis with various glycoproteins from larval and adult brains, although the intensity of staining of bands recognized by each antibody varied. Acidic glycolipids from pupae were also recognized, but only by the L2 antibody 334 and IgM M-protein. After desulfation of the acidic glycolipid fraction, the immunostaining pattern remained the same, an observation suggesting that the L2/HNK-1 epitope on insect acidic glycolipids contains a nonsulfated, glucuronic acid moiety. These observations indicate that the L2/HNK-1 carbohydrate structure occurs not only in vertebrates but also in insects on both glycoproteins and glycolipids, a finding suggesting a high degree of phylogenetic stability of this functionally important carbohydrate.  相似文献   

17.
Previous studies have shown that the glycoprotein oligosaccharides synthesized by adult Schistosoma mansoni, the organism responsible for human schistosomiasis, are unusual in that they contain terminal beta-GalNAc residues and lack sialic acid. These observations and other studies indicating that schistosome glycoproteins and glycolipids are antigenic in infected animals led us to investigate the structures of the glycosphingolipids synthesized by these organisms and to determine whether they are structurally related to those synthesized by their vertebrate hosts. For our studies, adult schistosomes were metabolically radiolabeled with either [3H]galactose or [3H]glucosamine, and the newly synthesized glycosphingolipids were isolated and characterized. The major glycosphingolipids synthesized by adult schistosomes were found to be galactosylceramide and glucosylceramide. The adult worms synthesized no lactosylceramide (Gal beta 1-4Glc-ceramide), a common constituent of vertebrate cells; however, another disaccharide-containing glycosphingolipid cleavable by ceramide glycanase was found. The results of compositional and methylation analyses and exoglycosidase treatments demonstrated that this ceramide-disaccharide has the structure GalNAc beta 1-4Glc-ceramide. We also found that extracts of adult schistosomes are unable to transfer Gal from UDP-Gal to glucosylceramide, whereas extracts of Chinese hamster ovary cells, as a control, are able to do so, confirming that schistosomes are unable to synthesize lactosylceramide. Low levels of higher molecular weight glycosphingolipids were also found to be synthesized by adult schistosomes, and although their levels were too small to allow definitive characterization, compositional analyses indicated that they also contained GalNAc. We have tentatively designated the new disaccharide structure GalNAc beta 1, 4Glc- the "schistocore", which may represent a new type of glycosphingolipid core series.  相似文献   

18.
By the use of an assay that measures the transfer of [3H]galactosylceramide from donor to acceptor liposomes, a protein has been purified 1683-fold from pig brain. The most purified fraction was purified to homogeneity as judged by electrophoresis on 15% polyacrylamide gel in the presence of sodium dodecyl sulfate. The protein has a molecular weight of 23000 as determined by the gel electrophoresis and 18500 as estimated by gel filtration through Sephadex G-75. The protein accelerates the transfer of labeled glycolipids at the following relative rates: 100 for glucosylceramide, 43 for lactosylceramide, 17 for galactosyldiglyceride, and 15 for galactosylceramide. The lipid-transfer stimulated by the protein is specific to glycolipids; the protein does not accelerate the transfer of labeled phosphatidylcholine and phosphatidylethanolamine from donor to acceptor liposomes.  相似文献   

19.
The transbilayer movement of glycosphingolipids has been characterized in Golgi, ER, plasma, and model membranes using spin-labeled and fluorescent analogues of the monohexosylsphingolipids glucosylceramide and galactosylceramide and of the dihexosylsphingolipid lactosylceramide. In large unilamellar lipid vesicles, monohexosylsphingolipids underwent a slow transbilayer diffusion (half-time between 2 and 5 h at 20 degrees C). Similarly, the inward redistribution of these sphingolipids in the plasma membrane of the hepatocyte-like cell line HepG2 and of erythrocytes was slow. However, in rat liver ER and Golgi membranes, we found a rapid transbilayer movement of spin-labeled monohexosylsphingolipids (half-time of approximately 3 min at 20 degrees C), which suggests the existence of a monohexosylsphingolipid flippase. The transbilayer movement of glucosylceramide in the Golgi and the ER displayed a saturable behavior, was inhibited by proteolysis, did not require Mg-ATP, and occurs in both directions. Treatment with DIDS inhibited the flip-flop of glucosylceramide but not that of phosphatidylcholine. These data suggest that the transbilayer movement of monoglucosylceramide in the ER and in the Golgi involves a protein that could be distinct from that previously evidenced for glycerophospholipids in the ER. In vivo, transbilayer diffusion should promote a symmetric distribution of monohexosylsphingolipids which are synthesized in the cytosolic leaflet. This should allow glucosylceramide rapid access to the lumenal leaflet where it is converted to lactosylceramide. No significant transbilayer movement of lactosylceramide occurred in both artificial and natural membranes over 1 h. Thus, lactosylceramide, in turn, is unable to diffuse to the cytosolic leaflet and remains at the lumenal leaflet where it undergoes the subsequent glycosylations.  相似文献   

20.
Previous reports from our laboratory (1981. J. Biol. Chem. 256: 13112-13120 and 1983. Endocrinology. 113: 251-258) showed the absence of Nfa-GalCer and Nfa-GaOse2Cer in kidneys of several strains of female mice. These lipids are always present in male kidneys and several other glycolipids are also elevated in males. To test whether this phenomenon is due to lowered biosynthesis in females, glycosphingolipid formation was assessed in kidney slices with [3H]galactose as precursor. The glycolipids were extracted after various incubation periods (from 30 min to 90 min) and individual glycolipids were separated and quantitated by high performance liquid chromatography and radioactivity was determined. The rate of formation of hydroxy fatty acid-containing galactosylceramide was the same in both sexes. The glycolipids which were low or not detectable in female kidney, Nfa-GalCer, Nfa-GaOse2Cer and Hfa-GaOse2Cer were rapidly labeled in the male kidney slices. These results suggest that nonhydroxy fatty acid-containing ceramide:UDP-Gal galactosyltransferase and hydroxy fatty acid-containing galactosylceramide:UDP-Gal galactosyltransferase have elevated activities in males. While the glucosylceramides are labeled at the same rates in both sexes, lactosylceramide appears to be labeled at higher rates in the male tissue. This suggests that glucosylceramide:UDP-Gal galactosyltransferase also has elevated activity in males. In addition, these data show that monohexosylceramides with different ceramide compositions are labeled at different rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号