首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of bioavailability of soil-sorbed atrazine   总被引:4,自引:0,他引:4  
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO(2) production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

2.
Assessment of Bioavailability of Soil-Sorbed Atrazine   总被引:4,自引:1,他引:3       下载免费PDF全文
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

3.
The use of palm kernel fibre, a readily available agricultural waste product for the sorption of Methylene blue from aqueous solution and the possible mechanism of sorption has been investigated at various fibre doses. The extent of dye removal and the rate of sorption were analyzed using two kinetic rate models (pseudo-first and pseudo-second-order kinetic models) and two diffusion models (intraparticle and external mass transfer models).

Analysis of the kinetic data at different sorbent dose revealed that the pseudo-first order kinetics fitted to the kinetic data only in the first 5 min of sorption and then deviated from the experimental data. The pseudo-second-order kinetic model was found to better fit the experimental data with high correlation coefficients at the various fibre dose used. The dye sorption was confirmed to follow the pseudo-second-order model by investigating the relationship between the amount of dye sorbed and the change in hydrogen ion concentration of the dye solution and also the dependence of dye uptake with solution temperature. It was found that the change in hydrogen ion concentration and increase in sorption temperature were directly related to the amount of dye sorbed, and activation energy was calculated to be −39.57 kJ/mol, indicating that the dye uptake is chemisorption, involving valence forces through sharing or exchange of electrons between sorbent and sorbate as covalent forces.

The intraparticle diffusion plots showed three sections indicating that intraparticle diffusion is not solely rate controlling. The intraparticle diffusion and mass transfer rate constants where observed to be well correlated with sorbent dose in the first 5 min of sorption, indicating sorption process is complex. It was found that at low sorbent dose the mass transfer is the main rate controlling parameter. However at high sorbent dose, intraparticle diffusion becomes rate controlling.  相似文献   


4.
Sorption of zinc and lead on coir   总被引:2,自引:0,他引:2  
Pilot tests have shown that coir (fibres from Coco nucifera) is suitable as a metal ion sorbent. Batch sorption experiments were carried out with Zn and Pb to quantify the sorption kinetics, the pH dependence of the sorption, sorption isotherms at pH 3.0 and pH 5.6, and desorption. Unground and unmodified coir was used and the metal concentrations ranged between 0 and 0.015 mM (1000 microg/l) for Zn and 0 and 9.7 x 10(-4) M (200 microg/l) for Pb. The pH maximum was 4.5 (91%) for Zn and 2.5 (97%) for Pb. Pb had a higher sorption affinity than Zn, and the affinity was higher at pH 5.6 than at pH 3.0. The isotherms could be represented by the Freundlich, but not by the Langmuir models in the concentration range tested. Desorption experiments demonstrated that less than 1% and 13% of the sorbed Pb and Zn, respectively, could be desorbed at pH 5.6 during 2h.  相似文献   

5.
This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10(5) denitrifying organisms per g of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded from initial aqueous-phase concentrations of about 1 and several mg/liter respectively, to nondetectable levels (less than 0.01 mg/liter) in less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to polycyclic aromatic hydrocarbon (PAH) compounds, whereas acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time required for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction, rather than being a result of enzyme induction, mutation, or use of preferential substrate. About 0.9% of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. Mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period and was rapid compared with PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. Soil sorption tests showed at the initiation of a test that the total mass of PAH compound was divided in comparable proportions between solute in the aqueous phase and solute sorbed on the solid phase. The microbial degradation of the PAH compound depends on the interrelationships between (i) the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, (ii) the concentration of PAH-degrading microorganisms, and (iii) the competing reaction for nitrate utilization via mineralization of the labile fraction of naturally occurring soil organic carbon.  相似文献   

6.
This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10(5) denitrifying organisms per g of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded from initial aqueous-phase concentrations of about 1 and several mg/liter respectively, to nondetectable levels (less than 0.01 mg/liter) in less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to polycyclic aromatic hydrocarbon (PAH) compounds, whereas acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time required for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction, rather than being a result of enzyme induction, mutation, or use of preferential substrate. About 0.9% of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. Mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period and was rapid compared with PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. Soil sorption tests showed at the initiation of a test that the total mass of PAH compound was divided in comparable proportions between solute in the aqueous phase and solute sorbed on the solid phase. The microbial degradation of the PAH compound depends on the interrelationships between (i) the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, (ii) the concentration of PAH-degrading microorganisms, and (iii) the competing reaction for nitrate utilization via mineralization of the labile fraction of naturally occurring soil organic carbon.  相似文献   

7.
Gong R  Feng M  Zhao J  Cai W  Liu L 《Bioresource technology》2009,100(2):975-978
In this paper, waste sawdust was functionalized by monosodium glutamate for improving its cationic sorption capacity. The functionalized sawdust (FS) and crude sawdust (CS) were compared for their malachite green (MG) sorption behaviors with a batch system. The effects of various experimental parameters (e.g. initial pH, sorbent dose, dye concentration, contact time, and temperature etc.) were investigated and the sorption kinetic and thermodynamic characteristics were understood. The MG removal ratios on FS and on CS increased with increasing initial pH and came up to the maximum value beyond pH 6 for FS and pH 8 for CS, respectively. The ratio of sorbed MG kept above 95% for 250 mg/l of MG solution when 2.0 g/l or more of FS was used. The MG removal percentage decreased more on CS than on FS with increasing initial MG concentration. The isothermal data of MG sorbed on FS and on CS followed the Langmuir model. By functionalizing, the sorption capacity (Q(m)) of sawdust for MG was increased from 85.47 to 196.08 mg/g and the sorption equilibrium time of MG was shortened from 23 to 4.5 h. The MG sorption processes on FS and on CS followed the pseudo-second-order rate kinetics. The sorptions of MG on FS and on CS were spontaneous and exothermic processes and lower temperatures were favorable for the sorption processes.  相似文献   

8.
Iron hydrous hydro(oxide) has been regarded as an important sorbent for Cr(VI) in soil systems due to its wide distribution. However, many factors, such as phosphate (P), organic ligands, and light sources, could influence Cr(VI) retention by the soil components. The existence of inorganic or organic ligands not only competes with solution Cr(VI) for surface sites, but also results in releasing sorbed Cr(VI). Although organic matter can reduce Cr(VI) to less toxic Cr(III), the reduction rate is extremely slow. The objective of this study was to evaluate the influence of P on Cr(VI) sorption by goethite. The reduction of Cr(VI) by N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) and goethite under different intensity of light was also investigated. Competitive sorption experiment indicated that P had lower inhibition of Cr(VI) sorption when the initial Cr(VI) concentration was higher than P. Goethite suspensions could catalyze Cr(VI) reduction under growth chamber light. Goethite accompanied with light could also accelerate Cr(VI) reduction by HEDTA. This phenomenon could be evidenced by the formation of Cr(III) and decreasing desorption of retained Cr(VI) by P.  相似文献   

9.
Dried biomass of Spirogyra neglecta rapidly sorbed the test metals and the process became saturated in 10-20min. Maximum sorption of Pb(II) [116.1mgg(-1)] and Cu(II) [115.3mgg(-1)] occurred at 0.1gl(-1) biomass and 100mgl(-1) metal concentration in the solution. Sorption of Cu(II) and Pb(II) occurred optimally at pH 4.5 and 5.0, respectively. Lead(II) and Cu(II) sorption were lesser from binary metal solution than from single metal solution. Lead(II) more severely inhibited Cu(II) sorption than vice versa thus reflecting greater affinity of Pb(II) for the biomass. NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles, Pb(II) and Cu(II) sorption decreased by 11% and 27%, respectively, at the end of the fifth cycle due inter alia to 10-15% loss of biomass. Nevertheless, Spirogyra appears to be a good sorbent for removing metals Cu(II) and Pb(II) from wastewaters.  相似文献   

10.
This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt for the three sludge types investigated.  相似文献   

11.
This work develops and utilizes a non-steady-state model for evaluating the interactions between sorption and biodegradation of hydrophobic organic compounds in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase, and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rates: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. The results of liquid tests indicate that biodegradation of the soil-soluble organic fraction did not significantly enhance the biodegradation rate. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but at a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller-bottle slurry test. The model with sorbed-phase biodegradation and the same biokinetic parameters, but unique mass transfer coefficients, simulated the experimental data in both slurry tests most successfully. Reduced mass transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.  相似文献   

12.
A model for the hydration behavior of human stratum corneum has been developed from measurements on in vitro samples isolated in a manner which minimized tissue treatment and trauma. Water sorption/desorption rate measurements as a function of water activity, temperature, and tissue integrity are reported. These data, together with thermodynamic data (infrared and nmr results reported earlier) are consistent with a model in which rapidly sorbed/desorbed water (ca. 0.5 mg water/mg stratum corneum) is associated with (“bound” by) the tissue, while slowly sorbed/desorbed “free” water (up to 12 mg water/mg stratum corneum) is kinetically restricted and probably intracellular in location. Both equilibrium water binding and desorption kinetic data suggest structural changes of this cellular water barrier upon hydration. Evidence for hysteresis in water sorption isotherms (reported by others) could not be reproduced.  相似文献   

13.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

14.
Kinetics of biosorption of cadmium on Baker's yeast   总被引:17,自引:0,他引:17  
In the present study the kinetics of biosorption of cadmium(II) ions by deactivated protonated yeast converted to sodium form was investigated for different initial concentrations of the metal ion (10-100 ppm) and different sorbent dosages (0.1-2.0 g) at a pH of 6.5. The adsorption process occurred in four distinct steps and the rates for these steps decreased sequentially. The rate of cadmium uptake in each case was pseudo-second-order with respect to metal ion concentration. The amount sorbed at equilibrium was found to be directly proportional to the initial metal ion concentration divided by the sorbent mass.  相似文献   

15.
Dissolved organic matter (DOM) interaction with pesticides was examined studying the ability of DOM to desorb 8 pesticides previously sorbed to soil. DOM was originating from municipal waste composts at two maturity degrees, recovered at 20°C and by hot-pressurised subcritical water. Pesticide desorption depended on their previous sorption on soil. When sorption was low (KOC ≤ 50, sulcotrione, metalaxyl), water was more efficient than DOM for desorption. On the contrary, when sorption was high (KOC ≥ 2000, trifluraline), little effect of DOM was observed. For the moderately sorbed pesticides, DOM favoured pesticide desorption compared to water. For the lowest sorbed pesticides (KOC ≤ 100), hysteresis was increased with larger proportions of DOM extracted with subcritical-water. Dissolved organic matter extracted from fresh-immature compost had larger capacity to mobilize the sorbed pesticides than the DOM from the mature compost. The pesticide desorption resulted from the positive and competitive interactions between pesticide, DOM and soil surfaces. These interactions were modelled considering separate partitioning coefficients. A general equation allowed the deduction of specific coefficients describing interactions in solution between pesticides and the non-sorbed fraction of DOM remaining in solution. This fraction was supposed to contain the most hydrophilic fraction of DOM and was able to interact with the most polar pesticide (amitrol). When pesticide hydrophobicity increased, the partitioning between pesticide and DOM decreased. Modelling the three-phase system (liquid, DOM and solid phases) pointed out that the solid phase played the most important role on pesticide behaviour through the sorption process of DOM and pesticides.  相似文献   

16.
The kinetics of radiocesium (137Cs) uptake by natural suspended matter collected from coastal waters in the southern Baltic has been studied under laboratory conditions. The uptake of radiocesium from seawater by the suspended matter took place immediately after introduction of the isotope and attained equilibrium within a few hours. Summer and winter suspended matter displayed equal Kd values, indicating similar sorption characteristics of radiocesium. The amounts of radiocesium sorbed from sea water were proportional to the suspended matter concentration studied,i.e. up to 312 mg dry wt dm–3. The relative uptake of radiocesium by live and dead plankton appeared to be the same. The desorption of radiocesium from dead plankton proceeded more rapidly and more intensively than sorption. There are no significant differences between the Kd values for plankton determined in laboratory experiments and those found for plankton populations under field conditions.  相似文献   

17.
Removal of basic and reactive dyes using ethylenediamine modified rice hull   总被引:6,自引:0,他引:6  
Ong ST  Lee CK  Zainal Z 《Bioresource technology》2007,98(15):2792-2799
Wastewaters from textile industries may contain a variety of dyes that have to be removed before their discharge into waterways. Rice hull, an agricultural by-product, was modified using ethylenediamine to introduce active sites on its surface to enable it to function as a sorbent for both basic and reactive dyes. The sorption characteristics of Basic Blue 3 (BB3) and Reactive Orange 16 (RO16) by ethylenediamine modified rice hull (MRH) were studied under various experimental conditions. Sorption was pH and concentration dependent. Simultaneous removal of BB3 and RO16 occurred at pH greater than 4. The kinetics of dye sorption fitted a pseudo-second order rate expression. Increase in agitation rate had no effect on the sorption of BB3 but increased uptake of RO16 on MRH. Decreasing particle size increased the uptake of dyes in binary dye solutions. Equilibrium data could be fitted into both the Langmuir and Freundlich isotherms. Maximum sorption capacities calculated from the Langmuir model are 14.68 and 60.24 mg/g for BB3 and RO16, respectively in binary dye solutions. This corresponds to an enhancement of 4.5 and 2.4 fold, respectively, compared to single dye solutions. MRH therefore has the potential of being used as an efficient sorbent for the removal of both dyes in textile wastewaters.  相似文献   

18.
Summary The usage of biosorbents allows separation of scandium and yttrium from each other and from Fe, Al, Ti, Si, and Ca in hydrometallurgical processing of ores and wastes. It was shown that sorption of scandium and yttrium increased with the increase in pH of solution. Initial rate of scandium sorption depended on the biomass type; however 85–98% of scandium was sorbed within 10–30 min with most biomass types tested. The presence of aluminum, iron (III), and titanium in the solution inhibited sorption of scandium and particularly yttrium. After four cycles of sorption, 98.8% of scandium and 87% of yttrium was extracted from red mud leach solution by the biomass of Saccharomyces cerevisiae and Aspergillus terreus, respectively. Selectivity of the process of scandium and yttrium recovery could be achieved during sorption and also desorption, when solubilization of sorbed associated elements was inhibited by high pH values.  相似文献   

19.
The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed "competence." Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer.  相似文献   

20.
The accessibility of 3,4-dichloroaniline (DCA) sorbed by activated carbon to degradative microorganisms was studied. A Paracoccus denitrificans strain capable of growing on medium with DCA as the only source of energy, carbon, and nitrogen was used in the experiment. The high sorption capacity of all the carbons studied (powdered RS and SKT-6A and granular AG-3) in relation to DCA (350 to 360, 480 to 520, and 540 to 580 mg/g, respectively) was demonstrated. The sorption capacity correlated positively with the specific surface area and the total volume of the sorbent micropores. The bulk of the DCA was reversibly sorbed and amenable to microbial decomposition; however, the decomposition rates significantly differed. When RS, SKT, and Agrosorb preliminarily saturated with DCA were incubated in a culture of P. denitrificans, the bulk of the reversibly sorbed DCA was decomposed (in the absence of the other carbon sources) in 2, 5, and 10 weeks, respectively, after which the process slowed down. At the end of the experiment (29 weeks), 81 to 87% of the DCA underwent full mineralization, which was accompanied by the release of chlorine ions; a small fraction of the xenobiotic (0.8 to 1.9%) remained a reversibly sorbed fraction (extractable with acetone), and 12 to 17% of the initial DCA seemed to have been chemically transformed and bound by carbon. The studied carbons may be used in biological decontamination of chloroaniline-polluted soils to decrease the toxic effect of chloroanilines on microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号