首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.  相似文献   

2.
The mitotic inducer p34cdc2 requires association with a cyclin and phosphorylation on Thr161 for its activity as a protein kinase. CAK, the p34cdc2 activating kinase, was previously identified as an enzyme necessary for this activating phosphorylation. We confirm here that CAK is a protein kinase and describe its purification over 13,000-fold from Xenopus egg extracts. We further show that CAK contains a protein identical or closely related to the previously identified Xenopus MO15 gene: p40MO15 copurifies with CAK, and an antiserum to p40MO15 specifically depletes cAK activity. CAK appears to be the only protein in Xenopus egg extracts that can activate complexes of either p34cdc2 or the closely related protein kinase, p33cdk2, with either cyclin A or cyclin B. The sequence similarity between p40MO15 and p34cdc2, and the approximately 200 kDa size of CAK, suggest that p40MO15 may itself be regulated by subunit association and by protein phosphorylations.  相似文献   

3.
Mechanisms of p34cdc2 regulation.   总被引:14,自引:6,他引:8       下载免费PDF全文
The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.  相似文献   

4.
Although Cks proteins were the first identified binding partners of cyclin-dependent protein kinases (cdks), their cell cycle functions have remained unclear. To help elucidate the function of Cks proteins, we examined whether their binding to p34cdc2 (the mitotic cdk) varies during the cell cycle in Xenopus egg extracts. We observed that binding of human CksHs2 to p34cdc2 was stimulated by cyclin B. This stimulation was dependent on the activating phosphorylation of p34cdc2 on Thr-161, which follows cyclin binding and is mediated by the cdk-activating kinase. Neither the inhibitory phosphorylations of p34cdc2 nor the catalytic activity of p34cdc2 was required for this stimulation. Stimulated binding of CksHs2 to another cdk, p33cdk2, required both cyclin A and activating phosphorylation. Our findings support recent models that suggest that Cks proteins target active forms of p34cdc2 to substrates.  相似文献   

5.
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.  相似文献   

6.
Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.   总被引:69,自引:19,他引:50       下载免费PDF全文
C Norbury  J Blow    P Nurse 《The EMBO journal》1991,10(11):3321-3329
The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis.  相似文献   

7.
Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.  相似文献   

8.
Cell cycle regulation of the p34cdc2 inhibitory kinases.   总被引:15,自引:4,他引:11       下载免费PDF全文
In cells of higher eukaryotic organisms the activity of the p34cdc2/cyclin B complex is inhibited by phosphorylation of p34cdc2 at two sites within its amino-terminus (threonine 14 and tyrosine 15). In this study, the cell cycle regulation of the kinases responsible for phosphorylating p34cdc2 on Thr14 and Tyr15 was examined in extracts prepared from both HeLa cells and Xenopus eggs. Both Thr14- and Tyr15- specific kinase activities were regulated in a cell cycle-dependent manner. The kinase activities were high throughout interphase and diminished coincident with entry of cells into mitosis. In HeLa cells delayed in G2 by the DNA-binding dye Hoechst 33342, Thr14- and Tyr15-specific kinase activities remained high, suggesting that a decrease in Thr14- and Tyr15- kinase activities may be required for entry of cells into mitosis. Similar cell cycle regulation was observed for the Thr14/Tyr15 kinase(s) in Xenopus egg extracts. These results indicate that activation of CDC2 and entry of cells into mitosis is not triggered solely by activation of the Cdc25 phosphatase but by the balance between Thr14/Tyr15 kinase and phosphatase activities. Finally, we have detected two activities capable of phosphorylating p34cdc2 on Thr14 and/or Tyr15 in interphase extracts prepared from Xenopus eggs. An activity capable of phosphorylating Tyr15 remained soluble after ultracentrifugation of interphase extracts whereas a second activity capable of phosphorylating both Thr14 and Tyr15 pelleted. The pelleted fraction contained activities that were detergent extractable and that phosphorylated p34cdc2 on both Thr14 and Tyr15. The Thr14- and Tyr15-specific kinase activities co-purified through three successive chromatographic steps indicating the presence of a dual-specificity protein kinase capable of acting on p34cdc2.  相似文献   

9.
The cdc2 protein kinase is an important regulatory protein for both meiosis and mitosis. Previously, we demonstrated that simultaneous mutation of Thr14-->Ala14 and Tyr15-->Phe15 in the Xenopus cdc2 protein results in an activated cdc2 mutant that induces maturation in resting oocytes. In addition, we confirmed the importance of the positive regulatory phosphorylation site, Thr161, by demonstrating that cdc2 mutants containing additional mutations of Thr161-->Ala161 or Glu161 are inactive in the induction of oocyte maturation. Here, we have analyzed the importance of an additional putative cdc2 phosphorylation site,Ser277. Single mutation of Ser277-->Asp277 or Ala277 had no effect on activity, and these mutants were unable to induce Xenopus oocyte maturation. However, the double mutant Ala161/Asp277 was capable of inducing oocyte maturation, suggesting that mutation of Ser277-->Asp277 could compensate for the mutation of Thr161-->Ala161. The Asp277 mutation could also compensate for the Ala161 mutation in the background of the activating mutations Ala14/Phe15. Although mutants containing the compensatory Ala161 and Asp277 mutations were capable of inducing oocyte maturation, these mutant cdc2 proteins lacked detectable in vitro kinase activity. Tryptic phosphopeptide mapping of mutant cdc2 protein and comparison with in vitro synthesized peptides indicated that Ser277 is not a major site of phosphorylation in Xenopus oocytes; however, we cannot rule out the possibility of phosphorylation at this site in a biologically active subpopulation of cdc2 molecules. The data presented here, together with prior reports of Ser277 phosphorylation in somatic cells, suggest an important role for Ser277 in the regulation of cdc2 activity. The regulatory role of Ser277 most likely involves its indirect effects on the nearby residue Arg275, which participates in a structurally important ion pair with Glu173, which lies in the same loop as Thr161 in the cdc2 protein.  相似文献   

10.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

11.
Fully grown Xenopus oocyte is arrested at prophase I of meiosis. Re-entry into meiosis depends on the activation of MPF (M-phase promoting factor or cyclin B.Cdc2 complex), triggered by progesterone. The prophase-arrested oocyte contains a store of Cdc2. Most of the protein is present as a monomer whereas a minor fraction, called pre-MPF, is found to be associated with cyclin B. Activation of Cdc2 depends on two key events: cyclin binding and an activating phosphorylation on Thr-161 residue located in the T-loop. To get new insights into the regulation of Thr-161 phosphorylation of Cdc2, monomeric Cdc2 was isolated from prophase oocytes. Based on its activation upon cyclin addition and detection by an antibody directed specifically against Cdc2 phosphorylated on Thr-161, we show for the first time that the prophase oocyte contains a significant amount of monomeric Cdc2 phosphorylated on Thr-161. PP2C, a Mg2+-dependent phosphatase, negatively controls Thr-161 phosphorylation of Cdc2. The unexpected presence of a population of free Cdc2 already phosphorylated on Thr-161 could contribute to the generation of the Cdc2 kinase activity threshold required to initiate MPF amplification.  相似文献   

12.
In fission yeast, the M-phase inducing kinase, a complex of p34cdc2 and cyclin B, is maintained in an inhibited state during interphase due to the phosphorylation of Cdc2 at Tyr15. This phosphorylation is believed to be carried out primarily by the Wee1 kinase. In human cells the negative regulation of p34cdc2/cyclin B is more complex, in that Cdc2 is phosphorylated at two inhibitory sites, Thr14 and Tyr15. The identities of the kinases that phosphorylate these sites are unknown. Since fission yeast Wee1 kinase behaves as a dual-specificity kinase in vitro, a popular hypothesis is that a human Wee1 homolog might phosphorylate p34cdc2 at both sites. We report here that a human gene, identified as a possible Wee1 homologue, blocks cell division when overexpressed in HeLa cells. This demonstrates functional conservation of the Wee1 mitotic inhibitor. Contrary to the dual-specificity kinase hypothesis, purified human Wee1 phosphorylates p34cdc2 exclusively on Tyr15 in vitro; no Thr14 phosphorylation was detected. Human and fission yeast Wee1 also specifically phosphorylate synthetic peptides at sites equivalent to Tyr15. Mutation of a critical lysine codon (Lys114) believed to be essential for kinase activity abolished both the in vivo mitotic inhibitor function and in vitro kinase activities of human Wee1. These results conclusively prove that Wee1 kinases inhibit mitosis by directly phosphorylating p34cdc2 on Tyr15, and strongly indicate that human cells have independent kinase pathways directing the two inhibitor phosphorylations of p34cdc2.  相似文献   

13.
The protein kinase activity of the cell cycle regulator p34cdc2 is inactivated when the mitotic cyclin to which it is bound is degraded. The amino (N)-terminus of mitotic cyclins includes a conserved "destruction box" sequence that is essential for degradation. Although the N-terminus of sea urchin cyclin B confer cell cycle-regulated degradation to a fusion protein, a truncated protein containing only the N-terminus of Xenopus cyclin B2, including the destruction box, is stable under conditions where full length molecules are degraded. In an attempt to identify regions of cyclin B2, other than the destruction box, involved in degradation, the stability of proteins encoded by C-terminal deletion mutants of cyclin B2 was examined in Xenopus egg extracts. Truncated cyclin with only the first 90 amino acids was stable, but other C-terminal deletions lacking between 14 and 187 amino acids were unstable and were degraded by a mechanism that was neither cell cycle regulated nor dependent upon the destruction box. None of the C-terminal deletion mutants bound p34cdc2. To investigate whether the binding of p34cdc2 is required for cell cycle-regulated degradation, the behavior of proteins encoded by a series of full length Xenopus cyclin B2 cDNA with point mutations in conserved amino acids in the p34cdc2-binding domain was examined. All of the point mutants failed to form stable complexes with p34cdc, and their degradation was markedly reduced compared to wild-type cyclin. Similar results were obtained when the mutant cyclins were synthesized in reticulocyte lysates and when cyclin mRNA was translated directly in a Xenopus egg extract. These results indicate that mutations that interfere with p34cdc2 binding also interfere with cyclin destruction, suggesting that p34cdc2 binding is required for the cell cycle-regulated destruction of Xenopus cyclin B2.  相似文献   

14.
Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations. Intriguingly, in cyclin B1-CDK1, the activating T161 phosphorylation never occurred without the T14 phosphorylation. This strict association could not be uncoupled by a substantial reduction of T14 phosphorylation in response to Myt1 knockdown, suggesting some causal relationship. However, T14 phosphorylation was not directly required for T161 phosphorylation, because Myt1 knockdown did uncouple these phosphorylations when leptomycin B prevented cyclin B1-CDK1 complexes from accumulating in cytoplasm. The coupling mechanism therefore depended on unperturbed cyclin B1-CDK1 traffic. The unexpected observation that the activating phosphorylation of cyclin B1-CDK1 was tightly coupled to its T14 phosphorylation, but not Y15 phosphorylation, suggests a mechanism that prevents premature activation by constitutively active CDK-activating kinase. This explained the opposite effects of reduced expression of Myt1 and Wee1, with only the latter inducing catastrophic mitoses.  相似文献   

15.
The protein kinase p34cdc2 is a key regulator of the cell cycle in all eukaryotes. Its activity is controlled by cell cycle-dependent interactions with other proteins, notably cyclins, and by changes in its phosphorylation state. Two inhibitory phosphorylation sites in chicken p34cdc2 have previously been mapped to threonine 14 and tyrosine 15. Here we describe the identification of threonine 161 as an additional in vivo phosphorylation site in vertebrate p34cdc2. Phosphorylation of this site is cell cycle dependent and likely to be required for p34cdc2 activity.  相似文献   

16.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

17.
We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests that unreplicated DNA inhibits p34cdc2/cyclin B activation by maintaining cdc25-C in a low activity, dephosphorylated state, probably by keeping the activity of a type-2A protein phosphatase towards cdc25-C at a high level.  相似文献   

18.
p40MO15, a cdc2-related protein, is the catalytic subunit of the kinase (CAK, cdk-activating kinase) responsible for Thr161/Thr160 phosphorylation and activation of cdk1/cdk2. We have found that strong overexpression of p40MO15 only moderately increases CAK activity in Xenopus oocytes, indicating that a regulatory CAK subunit (possibly a cyclin-like protein) limits the ability to generate CAK activity in p40MO15 overexpressing oocytes. This 36 kDa subunit was microsequenced after extensive purification of CAK activity. Production of Xenopus CAK activity was strongly reduced in enucleated oocytes overexpressing p40MO15 and p40MO15 shown to contain a nuclear localization signal required for nuclear translocation and generation of CAK activity. p40MO15 was found to be phosphorylated on Ser170 and Thr176 by proteolytic degradation, radiosequencing of tryptic peptides and mutagenesis. Thr176 phosphorylation is required and Ser170 phosphorylation is dispensable for p40MO15 to generate CAK activity upon association with the 36 kDa regulatory subunit. Finally, Thr176 and Ser170 phosphorylations are not intramolecular autophosphorylation reactions. Taken together, the above results identify protein-protein interactions, nuclear translocation and phosphorylation (by an unidentified kinase) as features of p40MO15 that are required for the generation of active CAK.  相似文献   

19.
Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins.   总被引:1,自引:0,他引:1  
Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Cdk1 (Cdc2) and Cdk2 should be bound to regulatory subunits named cyclins as well as phosphorylated on a conserved Thr located in the T-loop for full enzymatic activity. Cdc2- and Cdk2-cyclin complexes can be inactivated by phosphorylation on the catalytic cleft-located Thr-14 and Tyr-15 residues or by association with inhibitory subunits such as p21(Cip1). We have recently identified a novel Cdc2 regulator named RINGO that plays an important role in the meiotic cell cycle of Xenopus oocytes. RINGO can bind and activate Cdc2 but has no sequence homology to cyclins. Here we report that, in contrast with Cdc2- cyclin complexes, the phosphorylation of Thr-161 is not required for full activation of Cdc2 by RINGO. We also show that RINGO can directly stimulate the kinase activity of Cdk2 independently of Thr-160 phosphorylation. Moreover, RINGO-bound Cdc2 and Cdk2 are both less susceptible to inhibition by p21(Cip1), whereas the Thr-14/Tyr-15 kinase Myt1 can negatively regulate the activity of Cdc2-RINGO with reduced efficiency. Our results indicate that Cdk-RINGO complexes may be active under conditions in which cyclin-bound Cdks are inhibited and can therefore play different regulatory roles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号