首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interaction of L-arginine with unilamellar liposomes of dihexadecylphosphate sodium salt (DHP-Na) has been investigated using calorimetric, light scattering, fluorescence spectroscopy and zeta-potential techniques. Heating from room temperature, the bilayer exhibits a phase transition from a subgel (L(c)) to the gel (L(beta')) phase as well as a pre-transition (L(beta')-P(beta')), which is followed by the main lipid phase transition (P(beta')-L(alpha)). Direct studies of the interaction of L-arginine with the DHP-Na bilayers via isothermal titration calorimetry at 27 degrees C depict significant differences between samples in the L(c) and the L(beta') phases reflecting the effect of molecular organization of the lipids upon the interaction. While L-arginine has only a small impact upon the L(c) to L(beta') phase transition, it affects more significantly the transition temperature as well as the shape of the DSC peaks of the main lipid phase transition. Based on fluorescence and zeta-potential studies, the permeability of L-arginine through the liposomal membrane is higher within the temperature range of the main lipid phase transition. Encapsulated l-arginine obstructs the formation of the subgel phase.  相似文献   

2.
Suspensions of dipalmitoylphosphatidylglycerol (DPPG) have been analyzed by differential scanning calorimetry, equilibrium and differential scanning dilatometry, and X-ray diffraction techniques. After the DPPG suspensions are stored several days at 2 degrees C, a new phase transition is observed at a lower temperature than either the main transition or the pretransition. This subtransition has an enthalpy of about 6 kcal/mol and occurs at about 20 degrees C, the exact temperature depending on the buffer used. The lipid partial specific volume increases by 0.035 mL/g upon warming through the subtransition. X-ray diffraction patterns from suspensions in the subgel phase contain orders of a lamellar repeat and several additional sharp and broad wide-angle reflections between 8 and 2 A. As the water content in the specimen is reduced, the lamellar repeat period decreases, whereas the spacings and intensities of these additional wide-angle reflections are unchanged. These data indicate that on incubation at 2 degrees C the lipid molecules crystallize in the plane of each bilayer. X-ray experiments also show that this subgel phase converts to the normal L beta' gel phase above the subtransition.  相似文献   

3.
We have investigated effects of dimethylsulfoxide (DMSO) on the phase stability of multilamellar vesicles of the ether-linked 1,2-dihexadecyl-sn-glycero-3-phosphatidylcholine (DHPC-MLV), which is known to be in the interdigitated gel (LbetaI) phase in excess water at 20 degrees C. The results of X-ray diffraction experiments indicate that the DHPC membrane was in the Lbeta, phase at X> or =0.12 (X=mole fraction of DMSO in DMSO/water mixture). The result of differential scanning calorimetry indicate that the gel to liquid-crystalline phase transition temperature increased, but the LbetaI to Pbeta, phase transition temperature decreased with an increase in DMSO concentration. These results show that DMSO stabilizes the bilayer gel phase rather than the LbetaI phase at its low concentration. The solubility of phosphorylcholine, which is the same structure as the headgroup of DHPC, decreased with an increase in DMSO concentration, indicating that the interaction free energy of the hydrophilic segments of the membrane with solvents increases with an increase in DMSO concentration. On the basis of the thermodynamic analysis, the mechanism of the stabilization of the bilayer gel phase of DHPC-MLV by DMSO is discussed. The decrease in the repulsive interaction between the headgroups of the phospholipid induced by the low concentrations of DMSO in water plays an important role in this stabilization.  相似文献   

4.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were reconstituted in unilamellar lipid vesicles prepared by the cholate dialysis technique from pure dimyristoylphosphatidylcholine (DMPC), pure dipalmitoylphosphatidylcholine (DPPC), pure dioleoylphosphatidylcholine (DOPC), and phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (PC/PE/PS) (10:5:1). As probes for the vesicles' hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) and spin-labeled PC were used. The steady-state and time-resolved fluorescence parameters of DPH were determined as a function of temperature and composition of liposomes. Incorporation of either protein alone or together increased the steady-state fluorescence anisotropy (rs) of DPH in DOPC and PC/PE/PS (10:5:1) liposomes. In DMPC and DPPC vesicles, the proteins decreased rs significantly below the transition temperature (Tc) of the gel to liquid-crystalline phase transition. Time-resolved fluorescence measurements of DPH performed in reconstituted PC/PE/PS and DMPC proteoliposomes showed that the proteins disorder the bilayer both in the gel and in the liquid-crystalline phase. Little disordering by the proteins was observed by a spin-label located near the mid-zone of the bilayer 1-palmitoyl-2-(5-doxylstearoyl)-3-sn-phosphatidylcholine (8-doxyl-PC), whereas pronounced disordering was detected by 1-palmitoyl-2-(8-doxylpalmitoyl)-3-sn-phosphatidylcholine (5-doxyl-PC), which probes the lipid zone closer to the polar part of the membrane. Fluorescence lifetime measurements of DPH indicate an average distance of greater than or equal to 60 A between the heme of cytochrome P-450 and DPH.  相似文献   

5.
Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure (up to 46 kbar) for samples incubated at 2°C and for nonincubated DPPC samples subjected to equally high pressure. The nature of the transition from the GII gel phase of the hydrated lipid into the subgel phase on incubation is entirely different from that of the transition from the GII gel phase into the GIII gel phase of the nonincubated lipid. The GIII gel phase has a monoclinic interchain packing, while the subgel phase exhibits a triclinic interchain structure. It is shown that pressure cannot induce the transition from the GII gel phase to the subgel phase; however, it does stabilize the subgel phase above the subtransition temperature. The mechanism for the formation of the subgel phase and the complex phase behavior of the gel phase of DPPC are rationalized in terms of the dynamic properties of the acyl chains of the lipid molecule.  相似文献   

6.
Dilatometric studies of the subtransition in dipalmitoylphosphatidylcholine   总被引:4,自引:0,他引:4  
J F Nagle  D A Wilkinson 《Biochemistry》1982,21(16):3817-3821
The phase transition between the newly discovered low-temperature subgel phase and the gel phase of dipalmitoylphosphatidylcholine has been studied by using dilatometry. Equilibrium measurements show that the subtransition upon heating is centered at 13.5 degrees C, has a dilatometric half-width of 0.6 degree C, and comprises a specific volume change of 0.009 mL/g (about one-fourth the size of the main transition). When the gel phase is cooled, the subtransition does not occur until below 5 degrees C. The rate of formation as a function of incubation temperature for 1 degree C less than TI less than 6 degrees C was determined; it is not well fit by quantitative theories based upon homogeneous nucleation. However, some form of nucleation is present since temperature-jump studies show that once the subgel phase has started to form, it continues to grow in the range 6 degrees C less than TJ less than 12.8 degrees C. Thus, the true transition temperature lies between 12.8 and 13.5 degrees C, but nucleation of the subgel phase is severely retarded above 6 degrees C, leading to the large hysteresis observed upon cooling.  相似文献   

7.
We have studied the effect of acidic pH on the phase behavior of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry and x-ray scattering. Dispersions of DMPC in HCl solutions of pH = 4 and 3 behave identical to dispersions in water. The main transition temperature increases sharply and the pre-transition disappears at lower pH. An untilted gel phase is observed at pH = 2 and 1, in contrast to the tilted gel phase found at higher pH. The relatively large periodicity of the untilted gel phase, in comparison to that of the tilted gel phase occurring near neutral pH, clearly demonstrates the simultaneous charging and dehydration of the headgroups as the pH approaches the pK of the phosphate group. Headgroup dehydration at low pH also leads to the formation of DMPC crystallites and the inverted hexagonal phase at low and high temperatures, respectively, after a few days of incubation. These results show the significant effect of acidic pH on the phase behavior of zwitterionic lipids.  相似文献   

8.
R N Lewis  N Mak  R N McElhaney 《Biochemistry》1987,26(19):6118-6126
The thermotropic phase behavior of a series of 1,2-diacylphosphatidylcholines containing linear saturated acyl chains of 10-22 carbons was studied by differential scanning calorimetry. When fully hydrated and thoroughly equilibrated by prolonged incubation at appropriate low temperatures, all of the compounds studied form an apparently stable subgel phase (the Lc phase). The formation of the stable Lc phase is a complex process which apparently proceeds via a number of metastable intermediates after being nucleated by incubation at appropriate low temperatures. The process of Lc phase formation is subject to considerable hysteresis, and our observations indicate that the kinetic limitations become more severe as the length of the acyl chain increases. The kinetics of Lc phase formation also depend upon whether the acyl chains contain an odd or an even number of carbon atoms. The Lc phase is unstable at higher temperatures and upon heating converts to the so-called liquid-crystalline state (the L alpha phase). The conversion from the stable Lc to the L alpha phase can be a direct, albeit a multistage process, as observed with very short chain phosphatidylcholines, or one or more stable gel states may exist between the Lc and L alpha states. For the longer chain compounds, conversions from one stable gel phase to another become separated on the temperature scale, so that discrete subtransition, pretransition, and gel/liquid-crystalline phase transition events are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
(+)-Totarol, a highly hydrophobic diterpenoid isolated from Podocarpus spp., is inhibitory towards the growth of diverse bacterial species. (+)-Totarol decreased the onset temperature of the gel to liquid-crystalline phase transition of DMPC and DMPG membranes and was immiscible with these lipids in the fluid phase at concentrations greater than 5 mol%. Different (+)-totarol/phospholipid mixtures having different stoichiometries appear to coexist with the pure phospholipid in the fluid phase. At concentrations greater than 15 mol% (+)-totarol completely suppressed the gel to liquid-crystalline phase transition in both DMPC and DMPG vesicles. Incorporation of increasing amounts of (+)-totarol into DEPE vesicles induced the appearance of the H(II) hexagonal phase at low temperatures in accordance with NMR data. At (+)-totarol concentrations between 5 and 35 mol% complex thermograms were observed, with new immiscible phases appearing at temperatures below the main transition of DEPE. Steady-state fluorescence anisotropy measurements showed that (+)-totarol decreased and increased the structural order of the phospholipid bilayer below and above the main gel to liquid-crystalline phase transition of DMPC respectively. The changes that (+)-totarol promotes in the physical properties of model membranes, compromising the functional integrity of the cell membrane, could explain its antibacterial effects.  相似文献   

10.
We monitored the fluorescence intensity and anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) incorporated in bovine serum albumin (BSA) and dimyristoylphosphatidylcholine (DMPC) vesicle membranes, which in turn were embedded in optically clear gelatin solutions, as a function of temperature. DPH in BSA gave unanticipated large changes in fluorescence intensity and anisotropy at the instant of gelatin gel melting. Both steady state anisotropy and fluorescence intensity reported the gel-sol transition point in gelatin unambiguously, which was independently confirmed as physical-pour point of the gel. In the case of DMPC vesicles, fluorescence intensity indicated the gelatin transition, while the anisotropy indicated DMPC phase transition. This fluorescence methodology uniquely offered a common probe for two distinct transitions in two distinct domains interconnected by the solvent, water.  相似文献   

11.
The mechanism of the subtransitions (Lc to L beta') in L-dipalmitoylphosphatidylcholine bilayers in excess water has been investigated by time-resolved X-ray diffraction using synchrotron radiation. The temperature dependence of the diffraction patterns closely correlate with the asymmetric excess specific heat variation recorded by differential scanning calorimetry. During the subtransition two prominent wide-angle reflections, characteristic of the low-temperature crystalline phase, Lc, gradually change such that a sharp peak at a spacing of 0.430 nm decreases in intensity and ultimately disappears while a broader peak initially located at 0.375 nm progressively shifts to an eventual spacing of 0.410 nm. This behaviour is interpreted as a lateral deformation of the acyl chain packing subcell as the chains begin to rotate until a state is reached where the chains pack on a regular hexagonal array characteristic of the L beta phase. An increase in lamellar repeat distance from 6.0 to 6.4 nm takes place simultaneously with the acyl chain rearrangement at relatively low (5 K/min) as well as high (6 K/s) heating rates. As judged from the shape of the wide-angle peak, transformation to L beta' phase occurs some minutes after transition to the L beta phase. The X-ray data characterise the subtransition as a continuous (second order) phase transition in which a presumably orthorhombic subcell is transformed into a hexagonal subcell in a gradual process. In temperature jump experiments at 6 K/s between 0 degree C and 80 degrees C the relaxation time of the subtransition was found to be about 5 s while the relaxation time of the main gel to liquid-crystalline transition was about 2 s.  相似文献   

12.
X-ray diffraction, neutron diffraction and differential scanning calorimetry were used to investigate phase transitions in the ternary system phospholipid/dimethyl sulfoxide (DMSO)/water under cooling for three homologous phospholipids: dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). Below the temperature of ice formation from -40 to -113 degrees C, a new lamellar phase of DPPC and DSPC was found at and above a DMSO molar fraction of X(DMSO) = 0.05. Below X(DMSO) = 0.05 only a single dehydrated Lc-phase exists after ice formation. The new phase has an increased membrane repeat distance and coexists with a dehydrated Lc-phase. DPPC with a DMSO molar fraction of X(DMSO) = 0.07 shows a membrane repeat distance of the new phase of d = 6.61 +/- 0.03 nm. The value of d increases at the increase of X(DMSO). The new phase was not observed in the ternary system with DMPC. No correlation between the new phase and the glass transition of bound water in the intermembrane space was detected. The new phase was detected only in the systems with excess of water. The creation of the new phase demonstrates the specific DMSO interaction with hydrocarbon chains.  相似文献   

13.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

14.
Mixtures of 1,2-dipalmitoyl- and 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC and DHPC) in dispersion with excess water were studied by differential scanning calorimetry (DSC) and X-ray diffraction techniques. The transition parameters of the main gel-to-liquid crystalline transition show a monotonous dependence on the composition, indicating ideal miscibility of the two lipids, in keeping with the closely similar structures of the pure, hydrated lipids in the P beta' and L alpha states. The pre-transition shows a depression to a minimum temperature of 23 degrees C occurring around equimolar mixtures. Below the pre-transition temperatures, the L beta' gel phase of DPPC maintains bimolecular structure up to DHPC admixtures of 50 mol%, with adaptations in hydrocarbon chain packing and multilayer periodicity. On the side of DHPC, the interdigitated gel structure shows full solubility for DPPC up to equimolarity without major structural changes. The crystalline Lc-phase of DPPC exhibits immiscibility with DHPC, demonstrated by the fact that the subtransition is abolished already at less than 15 mol% DHPC. DHPC, below its subtransition, can accommodate up to 50 mol% DPPC within an interdigitated layer structure with unperturbed, crystalline hydrocarbon chain packing.  相似文献   

15.
Differential scanning calorimetry (DSC) has been applied to study the effect of free hydroxylated and methyl-branched fatty acids on the physico-chemical properties of lipid membranes. First, the impact of free hydroxy fatty acids (HFAs) on dimyristoylphosphatidylcholine (DMPC) model membranes was monitored only as a function of chain length and position of the attached hydroxyl group. Second, racemic vs. enantiopure anteiso fatty acids (AFAs) and HFAs were investigated to address the question of which role does a fatty acid's chirality play on its membrane pertubing effect. The DSC thermograms revealed that the main gel to liquid-crystalline phase transition of the DMPC bilayers which results in a disordering effect of the lipid hydrocarbon chains was affected in different ways depending on the nature of the incorporated fatty acid. Long-chain 2- and 3-HFAs stabilized the gel phase by reducing the phase transition temperature (T(m)), whereas short-chain HFAs and long-chain HFAs with the hydroxy group remote from the head group stabilized the more disordered liquid-crystalline state. Additionally, we observed that enantiopure (S)-14-methylhexadecanoic acid ((S)-a17:0) and (R)-2-hydroxy octadecanoic acid and the corresponding racemates had contrary effects upon incorporation into DMPC bilayers. In both cases, the pure enantiomers alleviated the liquid-crystalline state of the biological model membrane.  相似文献   

16.
Fluorescence polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH) have been compared with the excimer/monomer fluorescence intensity ratio (I'/I) of 1,3-di(2-pyrenyl)propane, (2Py(3)2Py). This ratio permits evaluation of changes in fluidity of the outer regions of the bilayer, where 2Py(3)2Py preferentially distributes. On the other hand, fluorescence polarization of DPH reports the structural order of the bilayer core. In the fluid phase of DMPC bilayers, for lindane concentrations higher than 25 microM, the excimer/monomer fluorescence intensity ratio (I'/I) decreases, thus reflecting an order increase of the probe environment. However, in the same conditions, the fluorescence polarization of DPH is almost insensitive to any perturbation. Identical results have been obtained in other pure lipid bilayers, namely DPPC and DSPC. However, both probes detect disordering effects of lindane in the gel phase of these lipids. The pyrene probe, unlike DPH, is very sensitive to the pretransitions of DPPC and DSPC, removed in the presence of lindane. Both probes fail to detect any apparent effect of lindane in DMPC bilayers enriched with high cholesterol content (greater than 30 mol%). However, in DMPC bilayers with low cholesterol content (less than 30 mol%), for temperatures below the phase transition of DMPC, both probes detect fluidizing effects induced by lindane. Nevertheless, above the phase transition of DMPC, 2Py(3)2Py detects ordering effects of lindane, whereas DPH detects hardly any effect. These results in DMPC bilayers with low cholesterol content are qualitatively similar to those described for DMPC without cholesterol.  相似文献   

17.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (approximately 11-15 degrees C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (approximately 23-25 degrees C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing approximately 30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

18.
Using multifrequency phase and modulation fluorometry and a nonlinear least-squares analysis of lifetime data, we were able to determine the complex decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in synthetic phospholipid bilayers. Our results showed a monoexponential decay of DPH in the pure isotropic solvents studied, over a wide temperature range, and a double-exponential decay of DPH in phospholipids, both above and below the transition. During the transition, and in mixed-phase phospholipids, a three-component analysis was successfully accomplished, and the pre-exponential factors of the two main components have been shown to be quantitatively representative of the gel and liquid-crystalline phases of the bilayer. The fractional intensity of the shorter lifetime component depends on the modalities of the sample preparation. The factors affecting this component are discussed. From the DPH fluorescence lifetime and from the anisotropy data in L-alpha-dimyristoyl-phosphatidylcholine/L-alpha-dipalmitoyl-phosphatidyl choline mixtures, a phase diagram was independently constructed. Conclusions about the sensitivity and the partition of the probe between gel and the liquid-crystalline phases of the bilayer are derived. Lifetime experiments on DPH in a L-alpha-dilauroyl-phosphatidylcholine/L-alpha-dipalmitoyl-phosphatidylch oline mixture suggested a general method for the determination and quantitation of the two different phases in the bilayer.  相似文献   

19.
A recent study using differential scanning calorimetry (DSC) showed that the thermotropic phase behavior of 1,2-dipalmitoyl-sn-glycero-3-thiophosphocholine (DPPsC) is sensitive to the configuration at phosphorus and that the Rp isomer displayed only a broad transition at 45.6 degrees C [Wisner, D. A., Rosario-Jansen, T., & Tsai, M.-D. (1986) J. Am. Chem. Soc. 108, 8064-8068]. We have employed X-ray diffraction, 31P NMR, and Fourier transform infrared (FT-IR) spectroscopy to characterize various phases of the isomers of DPPsC, to compare the structural differences between 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and isomers of DPPsC, and to identify structural factors responsible for the unique behavior of the RP isomer. The results from all three techniques support the previous proposal based on DSC studies that (SP)- and (RP + SP)-DPPsC undergo a subtransition, a pretransition, and a main transition analogous to those of DPPC, while (RP)-DPPsC is quite stable at the subgel phase and undergoes a direct subgel----liquid-crystalline transition at 46 degrees C. Quantitative differences between DPPC and DPPsC (i.e., the effect of sulfur substitution rather than the configurational effect) in the subgel phase have also been observed in the chain spacing, the motional averaging, and the factor group splitting (revealed by X-ray diffraction, 31P NMR, and FT-IR, respectively). In particular, DPPsC isomers are motionally rigid and show enhanced factor group splitting in the subgel phase. These results suggest that DPPsC is packed in different subcells relative to DPPC in the subgel phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We report a new phase transition in fully hydrated dispersions of dipalmitoylphosphatidylcholine (DPPC). This new transition, called the sub-subtransition, exhibits a transition enthalpy of 0.25 kcal/mol with a Tm at 6.8 degrees C. Unlike the subtransition, no extended low temperature incubation is required to observe the sub-subtransition. This new sub-subgel (SGII) phase may be a precursor to the subgel (SGI) phase, and this discovery is discussed in relation to the current knowledge regarding the polymorphic gel phases of both ester- and ether-linked lipids with identical acyl chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号